spring-batch批处理框架(2)

文章目录

  • 八、作业控制
    • 8.1 作业启动
      • 8.1.1 SpringBoot 启动
      • 8.1.2 Spring 单元测试启动
      • 8.1.3 RESTful API 启动
    • 8.2 作业停止
        • 方案1:Step 步骤监听器方式
        • 方案2:StepExecution停止标记
    • 8.3 作业重启
      • 8.3.1 禁止重启
      • 8.3.2 限制重启次数
      • 8.3.3 无限重启
  • 九、ItemReader
    • 9.1 读平面文件
        • 9.1.1 方式1:delimited--字符串截取
        • 9.1.2 方式2:FieldSetMapper--字段映射
    • 9.2 读JSON文件
    • 9.3 读数据库
      • 9.3.1 基于游标方式
      • 9.3.2 基于分页方式
    • 9.4 读取异常
  • 十、ItemProcessor
    • 10.1 默认ItemProcessor
      • 10.1.1 ValidatingItemProcessor:校验处理器
      • 10.1.2 ItemProcessorAdapter:适配器处理器
      • 10.1.3 ScriptItemProcessor:脚本处理器
      • 10.1.4 CompositeItemProcessor:组合处理器
    • 10.2 自定义ItemProcessor处理器
  • 十一、ItemWriter
    • 11.1 输出平面文件
    • 11.2 输出Json文件
    • 11.3 输出数据库
    • 11.4 输出多终端
  • 十二、Spring Batch 高级
    • 12.1 多线程步骤
    • 12.2 并行步骤
    • 12.3 分区步骤
  • 十三、综合案例
    • 13.1 案例需求
    • 13.2 分析
    • 13.3 项目准备
    • 13.4 需求一
    • 13.5 需求二
    • 13.6 需求三

spring-batch批处理框架(1)
spring-batch批处理框架(2)

八、作业控制

作业的运行指的是对作业的控制,包括作业启动,作业停止,作业异常处理,作业重启处理等。

8.1 作业启动

8.1.1 SpringBoot 启动

目前为止,上面所有的案例都是使用Spring Boot 原生功能来启动作业的,其核心类:JobLauncherApplicationRunner , Spring Boot启动之后,马上调用该类run方法,然后将操作委托给SimpleJobLauncher类run方法执行。默认情况下,Spring Boot一启动马上执行作业。

如果不想Spring Boot启动就执行,可以通过配置进行修改

spring:batch:job:enabled: false   #false表示不启动

(BatchAutoConfiguration中使用了条件注解,指定了JobLauncherApplicationRunner的生效条件为spring.batch.job.enabled=true,如果不指定,默认为true)

8.1.2 Spring 单元测试启动

开发中如果想简单验证批处理逻辑是否能运行,可以使用单元测试方式启动作业

先引入spring-test测试依赖

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId>
</dependency>

建立启动类

@SpringBootApplication
@EnableBatchProcessing
public class App {public static void main(String[] args) {SpringApplication.run(App.class, args);}
}

建立测试类

@SpringBootTest(classes = App.class)
public class StartJobTest {//job调度器@Autowiredprivate JobLauncher jobLauncher;@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;public Tasklet tasklet(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {System.out.println("Hello SpringBatch....");return RepeatStatus.FINISHED;}};}public Step  step1(){TaskletStep step1 = stepBuilderFactory.get("step1").tasklet(tasklet()).build();return step1;}//定义作业public Job job(){Job job = jobBuilderFactory.get("start-test-job").start(step1()).build();return job;}@Testpublic void testStart() throws Exception{//job作业启动//参数1:作业实例,参数2:作业运行携带参数jobLauncher.run(job(), new JobParameters());}
}

跟之前的SpringBoot启动区别在于多了JobLauncher 对象的获取,再由这个对象调用run方法启动。

8.1.3 RESTful API 启动

如果批处理不是SpringBoot启动就启动,而是通过web请求控制,那该怎么办呢?不难,引入web环境即可

1>首先限制,不随SpringBoot启动而启动

spring:batch:job:enabled: false   #false表示不启动

2>引入web 环境

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId>
</dependency>

3>编写启动类

@SpringBootApplication
public class App {public static void main(String[] args) {SpringApplication.run(App.class, args);}
}

4>编写配置类

@EnableBatchProcessing
@Configuration
public class BatchConfig {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic Tasklet tasklet(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {System.out.println("Hello SpringBatch....");return RepeatStatus.FINISHED;}};}@Beanpublic Step step1(){TaskletStep step1 = stepBuilderFactory.get("step1").tasklet(tasklet()).build();return step1;}//定义作业@Beanpublic Job job(){Job job = jobBuilderFactory.get("hello-restful-job").start(step1()).build();return job;}
}

5>编写Controller类

@RestController
public class HelloController {@Autowiredprivate JobLauncher jobLauncher;@Autowiredprivate Job job;@GetMapping("/job/start")public ExitStatus start() throws Exception {//启动job作业JobExecution jobExecution = jobLauncher.run(job, new JobParameters());return jobExecution.getExitStatus();}
}

6>测试

(第一次执行和第二次执行的结果如下图所示)

image-20250415220526738

注意:如果需要接收参数

image-20230112202915961

1>作业使用run.id自增

//构造一个job对象
@Bean
public Job job(){return jobBuilderFactory.get("hello-restful-job").start(step1()).incrementer(new RunIdIncrementer()).build();
}

2>改动HelloController接口方法

@RestController
public class HelloController {@Autowiredprivate JobLauncher jobLauncher;@Autowiredprivate Job job;@GetMapping("/job/start")public ExitStatus startJob(String name) throws Exception {//启动job作业JobParameters jobParameters = new JobParametersBuilder().addString("name", name).toJobParameters();JobExecution jobExecution = jobLauncher.run(job, jobParameters);return jobExecution.getExitStatus();}
}

但是这样,当使用同一参数,第二次调用该接口时,会报错,因为该job又使用了同一参数所标识的jobInstance已经执行成功过了。

org.springframework.batch.core.repository.JobInstanceAlreadyCompleteException: A job instance already exists and is complete for parameters={name=null}.  If you want to run this job again, change the parameters.

可如下修改:

@RestController
public class HelloController {@Autowiredprivate JobLauncher jobLauncher;@Autowiredprivate Job job;@Autowiredprivate JobExplorer jobExplorer;@GetMapping("/job/start")public ExitStatus startJob(String name) throws Exception {//run.id 自增前提:先获取到之前jobparameter中run.id 才能进行自增// 也就是说, 当前请求想要让run.id 自增,需要获取之前jobparameter才能加-//启动job作业JobParameters parameters = new JobParametersBuilder(jobExplorer).getNextJobParameters(job).addString("name", name).toJobParameters();JobExecution jobExet = jobLauncher.run(job, parameters);return jobExet.getExitStatus();}
}

8.2 作业停止

作业的停止,存在有3种情况:

  • 一种自然结束

    作业成功执行,正常停止,此时作业返回状态为:COMPLETED

  • 一种异常结束
    作业执行过程因为各种意外导致作业中断而停止,大多数作业返回状态为:FAILED

  • 一种编程结束

    某个步骤处理数据结果不满足下一步骤执行前提,手动让其停止,一般设置返回状态为:STOPED

上面1,2种情况相对简单,我们重点说下第三种:以编程方式让作业停止。

模拟一个操作场景

1>有一个资源类,里面有2个属性:总数:totalCount = 100, 读取数:readCount = 0

2>设计2个步骤,step1 用于叠加readCount 模拟从数据库中读取资源, step2 用于执行逻辑

3>当totalCount == readCount 时,为正常情况,正常结束。如果不等时,为异常状态。此时不执行step2,直接停止作业。

4>修复数据,在从step1开始执行,并完成作业

public class ResouceCount {public static int totalCount = 100;  //总数public static int  readCount = 0;    //读取数
}

要实现上面需求,有2种方式可以实现

方案1:Step 步骤监听器方式

监听器

public class StopStepListener implements StepExecutionListener {@Overridepublic void beforeStep(StepExecution stepExecution) {}@Overridepublic ExitStatus afterStep(StepExecution stepExecution) {//不满足if(ResouceCount.totalCount != ResouceCount.readCount){return ExitStatus.STOPPED;  //手动停止,后续可以重启}return stepExecution.getExitStatus();}
}

代码

@SpringBootApplication
@EnableBatchProcessing
public class ListenerJobStopJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;private int readCount = 50; //模拟只读取50个@Beanpublic Tasklet tasklet1(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {for (int i = 1; i <= readCount; i++) {System.out.println("------------step1执行-"+i+"-------------");ResouceCount.readCount ++;}return RepeatStatus.FINISHED;}};}@Beanpublic Tasklet tasklet2(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {System.err.println("step2执行了.......");System.err.println("readCount:" + ResouceCount.readCount + ", totalCount:" + ResouceCount.totalCount);return RepeatStatus.FINISHED;}};}@Beanpublic StopStepListener stopStepListener(){return new StopStepListener();}@Beanpublic Step step1(){return stepBuilderFactory.get("step1").tasklet(tasklet1()).listener(stopStepListener()).allowStartIfComplete(true)  // 执行完后,允许重启.build();}@Beanpublic Step step2(){return stepBuilderFactory.get("step2").tasklet(tasklet2()).build();}//定义作业@Beanpublic Job job(){return jobBuilderFactory.get("job-stop-job").start(step1())/* 当step1 返回的是STOPPED状态码,马上结束作业流程,设置流程状态为:STOPPED,并设置后续重启时,从step1位置开始执行*/.on("STOPPED").stopAndRestart(step1())/* 如果step1执行结果不是STOPPED 而是其他状态, 表示满足判断条件,然后执行step2步骤 */.from(step1()).on("*").to(step2()).end().build();}public static void main(String[] args) {SpringApplication.run(ListenerJobStopJob.class, args);}
}

第一次执行(注意打开spring.batch.job.enabled=true,然后启动):tasklet1 中readCount 默认执行50次,不满足条件, stopStepListener() afterStep 返回STOPPED, job进行条件控制走**.on(“STOPPED”).stopAndRestart(step1())** 分支,停止并允许重启–下次重启,从step1步骤开始执行

第二次执行, 修改readCount = 100(模拟修复数据动作), 再次启动作业,task1遍历100次,满足条件, stopStepListener() afterStep 正常返回,job条件控制走**.from(step1()).on(“*”).to(step2()).end()**分支,正常结束。

注意:step1() 方法中**.allowStartIfComplete(true)** 代码必须添加,因为第一次执行step1步骤,虽然不满足条件,但是它仍属于正常结束(正常执行完tasklet1的流程),状态码:COMPLETED, 第二次重启,默认情况下正常结束的step1步骤是不允许再执行的,所以必须设置:.allowStartIfComplete(true) 允许step1即使完成也可以重启。

方案2:StepExecution停止标记
@SpringBootApplication
@EnableBatchProcessing
public class SignJobStopJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;private int readCount = 50; //模拟只读取50个@Beanpublic Tasklet tasklet1(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {for (int i = 1; i <= readCount; i++) {System.out.println("--------------step1执行-"+i+"---------------");ResouceCount.readCount ++;}if(ResouceCount.readCount != ResouceCount.totalCount){chunkContext.getStepContext().getStepExecution().setTerminateOnly();}return RepeatStatus.FINISHED;}};}@Beanpublic Tasklet tasklet2(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {System.err.println("step2执行了.......");System.err.println("readCount:" + ResouceCount.readCount + ", totalCount:" + ResouceCount.totalCount);return RepeatStatus.FINISHED;}};}@Beanpublic Step step1(){return stepBuilderFactory.get("step1").tasklet(tasklet1()).allowStartIfComplete(true).build();}@Beanpublic Step step2(){return stepBuilderFactory.get("step2").tasklet(tasklet2()).build();}//定义作业@Beanpublic Job job(){return jobBuilderFactory.get("job-stop-job").start(step1()).next(step2()).build();}public static void main(String[] args) {SpringApplication.run(SignJobStopJob.class, args);}
}

变动的代码有2处

tasket1(), 多了下面判断

if(ResouceCount.readCount != ResouceCount.totalCount){chunkContext.getStepContext().getStepExecution().setTerminateOnly();
}

其中的StepExecution#setTerminateOnly() 给运行中的stepExecution设置停止标记,Spring Batch 识别后直接停止步骤,进而停止流程

job() 改动

return jobBuilderFactory.get("job-stop-job").start(step1()).next(step2()).build();

正常设置步骤流程。

8.3 作业重启

作业重启,表示允许作业步骤重新执行,默认情况下,只允许异常终止状态的步骤重启,但有时存在特殊场景,要求需要其他状态步骤重启,为应付各种复杂的情形,Spring Batch 提供3种重启控制操作。

8.3.1 禁止重启

这种适用一次性执行场景,如果执行失败,就不允许再次执行。可以使用作业的禁止重启逻辑

@SpringBootApplication
@EnableBatchProcessing
public class JobForBidRestartJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic Tasklet tasklet1(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {System.err.println("-------------tasklet1-------------");// 停止步骤chunkContext.getStepContext().getStepExecution().setTerminateOnly(); return RepeatStatus.FINISHED;}};}@Beanpublic Tasklet tasklet2(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {System.err.println("-------------tasklet2-------------");return RepeatStatus.FINISHED;}};}@Beanpublic Step step1(){return stepBuilderFactory.get("step1").tasklet(tasklet1()).build();}@Beanpublic Step step2(){return stepBuilderFactory.get("step2").tasklet(tasklet2()).build();}//定义作业@Beanpublic Job job(){return jobBuilderFactory.get("job-forbid-restart-job").preventRestart()  //禁止重启.start(step1()).next(step2()).build();}public static void main(String[] args) {SpringApplication.run(JobForBidRestartJob.class, args);}
}

观察上面代码,比较特别之处:

tasklet1() 加了setTerminateOnly 设置,表示让步骤退出

 chunkContext.getStepContext().getStepExecution().setTerminateOnly();

job() 多了**.preventRestart()** 逻辑,表示步骤不允许重启

第一次按上面的代码执行一次, step1() 状态为 STOPPED

第二次去掉setTerminateOnly逻辑,重新启动步骤,观察结果,直接报错

image-20221204111033730

8.3.2 限制重启次数

适用于重启次数有限的场景,比如下载/读取操作,可能因为网络原因导致下载/读取失败,运行重试几次,但是不能无限重试。这时可以对步骤执行进行重启次数限制。

@SpringBootApplication
@EnableBatchProcessing
public class JobLimitRestartJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic Tasklet tasklet1(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {System.err.println("-------------tasklet1-------------");// 停止步骤chunkContext.getStepContext().getStepExecution().setTerminateOnly();return RepeatStatus.FINISHED;}};}@Beanpublic Tasklet tasklet2(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {System.err.println("-------------tasklet2-------------");return RepeatStatus.FINISHED;}};}@Beanpublic Step step1(){return stepBuilderFactory.get("step1")// 意味着执行重启1次,注意: springbatch 第一次启动就开始统计了.startLimit(2).tasklet(tasklet1()).build();}@Beanpublic Step step2(){return stepBuilderFactory.get("step2").tasklet(tasklet2()).build();}//定义作业@Beanpublic Job job(){return jobBuilderFactory.get("job-restart-limit-job").start(step1()).next(step2()).build();}public static void main(String[] args) {SpringApplication.run(JobLimitRestartJob.class, args);}
}

变动:

step1() 添加了**.startLimit(2)** 表示运行重启2次,注意,第一次启动也算一次

tasklet1() 设置setTerminateOnly 第一次先让step1 状态为STOPPED

第一次执行, step1 为 STOPPED 状态

第二次执行,不做任何操作,第二次执行,step1 还是STOPPED状态

第三次执行, 注释掉tasklet1() 中setTerminateOnly , 查询结果

image-20221204112325377

8.3.3 无限重启

Spring Batch 限制同job名跟同标识参数作业只能成功执行一次,这是Spring Batch 定理,无法改变的。但是,对于步骤不一定适用,可以通过步骤的allowStartIfComplete(true) 实现步骤的无限重启。

@SpringBootApplication
@EnableBatchProcessing
public class JobAllowRestartJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic Tasklet tasklet1(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {System.err.println("-------------tasklet1-------------");return RepeatStatus.FINISHED;}};}@Beanpublic Tasklet tasklet2(){return new Tasklet() {@Overridepublic RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {System.err.println("-------------tasklet2-------------");return RepeatStatus.FINISHED;}};}@Beanpublic Step step1(){return stepBuilderFactory.get("step1").tasklet(tasklet1()).build();}@Beanpublic Step step2(){return stepBuilderFactory.get("step2").tasklet(tasklet2()).build();}//定义作业@Beanpublic Job job(){return jobBuilderFactory.get("job-allow-restart-job").start(step1()).next(step2()).build();}public static void main(String[] args) {SpringApplication.run(JobAllowRestartJob.class, args);}
}

观察上面代码,很正常逻辑

第一次启动:step1 step2正常执行,整个Job 成功执行完成

第二次启动:不做任何改动时,再次启动job,没有报错,但是观察数据库表batch_job_execution 状态为 NOOP 无效执行,step1 step2 不会执行。

第三次启动:给step1或step2 添加上**.allowStartIfComplete(true)**, 再次启动,一切正常,并且可以无限启动(step1和step2谁加了这个allowStartIfComplete(true),谁在重启时就可以执行,没有加的话,重启时就不会执行)

九、ItemReader

居于块操作的步骤由一个ItemReader,一个ItemProcessor和一个ItemWriter组成,一个负责读取数据,一个负责处理数据,一个负责输出数据,上一章节讲完步骤,接下来就重点讲解Spring Batch 输入组件:ItemReader

ItemReader 是Spring Batch 提供的输入组件,规范接口是ItemReader, 里面有个read() 方法,我们可以实现该接口去定制输入逻辑。

public interface ItemReader<T> {@NullableT read() throws Exception, UnexpectedInputException, ParseException, NonTransientResourceException;
}

Spring Batch 根据常用的输入类型,提供许多默认的实现,包括:平面文件、数据库、JMS资源和其他输入源等,接下来一起操作一下比较场景的输入场景。

9.1 读平面文件

平面文件一般指的都是简单行/多行结构的纯文本文件,比如记事本记录文件。与xml这种区别在于没有结构,没有标签的限制。

Spring Batch默认使用 FlatFileItemReader 实现平面文件的输入。

9.1.1 方式1:delimited–字符串截取

需求:读取user.txt文件,解析出所有用户信息

user.txt

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

实体类

@Getter
@Setter
@ToString
public class User {private Long id;private String name;private int age;
}

实现作业

//读user.txt文件封装user对象中并打印
@EnableBatchProcessing
@SpringBootApplication
public class FlatReaderJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;//job--->step---tasklet//job--->step-chunk----reader---writer@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {items.forEach(System.err::println);}};}@Beanpublic FlatFileItemReader<User> itemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader")//获取文件.resource(new ClassPathResource("user.txt"))//解析数据--指定解析器使用# 分割--默认是 ,号.delimited().delimiter("#")//按照 # 截取数据之后, 数据怎么命名.names("id", "name", "age")//封装数据--将读取的数据封装到对象:User对象.targetType(User.class).build();}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User,User>chunk(1) //一次读多少数据.reader(itemReader()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("flat-reader-job").start(step()).build();}public static void main(String[] args) {SpringApplication.run(FlatReaderJob.class, args);}
}

核心在userItemReader() 实例方法

//FlatFileItemReader spring batch 平面文件读入类
//这个类操作特点:一行一行的读数据
@Bean
public FlatFileItemReader<User> userItemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("users.txt"))  //指定读取的文件.delimited().delimiter("#")  //读取出一行数据,该如何分割数据,默认以,分割,当前使用#号分割.targetType(User.class)      //读取出一行数据封装成什么对象//给分割后数据打name标记,后续跟User对象属性进行映射.names("id", "name", "age")  .build();
}

除了上面讲到的核心方法,FlatFileItemReaderBuilder还提供.fieldSetMapper .lineTokenizer 2个方法,用于定制文件解析与数据映射。

9.1.2 方式2:FieldSetMapper–字段映射

FlatFileItemReaderBuilder 提供的方法,用于字段映射,方法参数是一个FieldSetMapper接口对象

public interface FieldSetMapper<T> {T mapFieldSet(FieldSet fieldSet) throws BindException;
}

FieldSet 字段集合,FlatFileItemReader 解析出一行数据,会将这行数据封装到FieldSet对象中。

我们用一个案例来解释一下FieldSetMapper 用法

编写users2.txt文件

1#dafei#18#广东#广州#天河区
2#xiaofei#16#四川#成都#武侯区
3#laofei#20#广西#桂林#雁山区
4#zhongfei#19#广东#广州#白云区
5#feifei#15#广东#广州#越秀区

用户对象

@Getter
@Setter
@ToString
public class User {private Long id;private String name;private int age;private String address;
}

观察,user2.txt文件中有 id name age province city area 按理用户对象属性应该一一对应,但是此时User只有address,也就是说,后续要将 province , city , area 合并成 address 地址值。此时怎么办?这是就需要自定义FieldSetMapper 啦。

public class UserFieldMapper implements FieldSetMapper<User> {@Overridepublic User mapFieldSet(FieldSet fieldSet) throws BindException {//自己定义映射逻辑User User = new User();User.setId(fieldSet.readLong("id"));User.setAge(fieldSet.readInt("age"));User.setName(fieldSet.readString("name"));String addr = fieldSet.readString("province") + " " + fieldSet.readString("city") + " " + fieldSet.readString("area");User.setAddress(addr);return User;}
}

上面代码实现FieldSet与User对象映射,将province city area 合并成一个属性address。另外readXxx 是FieldSet 独有的方法,Xxx是java基本类型。

//读user.txt文件封装user对象中并打印
@EnableBatchProcessing
@SpringBootApplication
public class MapperFlatReaderJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;//job--->step---tasklet//job--->step-chunk----reader---writer@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {items.forEach(System.err::println);}};}@Beanpublic UserFieldMapper userFieldMapper(){return new UserFieldMapper();}@Beanpublic FlatFileItemReader<User> itemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader")//获取文件.resource(new ClassPathResource("users2.txt"))//解析数据--指定解析器使用# 分割--默认是 ,号.delimited().delimiter("#")//按照 # 截取数据之后, 数据怎么命名.names("id", "name", "age","province","city","area")//封装数据--将读取的数据封装到对象:User对象//.targetType(User.class)  自定封装.fieldSetMapper(userFieldMapper()).build();}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(1) //一次读多少数据.reader(itemReader()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("mapper-flat-reader-job").start(step()).build();}public static void main(String[] args) {SpringApplication.run(MapperFlatReaderJob.class, args);}}

上面代码核心在userItemReader实例方法

.fieldSetMapper(userFieldMapper()) : 用上自定义的字段映射器

.names(“id”, “name”, “age”, “province”, “city”, “area”) : users2.txt 每一行使用#分割出现6列,给每一列取名字,然后将其封装到FieldSet对象中

.targetType(User.class) : 注意,使用了fieldSetMapper 之后,不需要在加上这行

9.2 读JSON文件

Spring Batch 也提供专门操作Json文档的API : JsonItemReader,具体使用且看案例

需求:读取下面json格式文档

[{"id":1, "name":"dafei", "age":18},{"id":2, "name":"xiaofei", "age":17},{"id":3, "name":"zhongfei", "age":16},{"id":4, "name":"laofei", "age":15},{"id":5, "name":"feifei", "age":14}
]

封装成User对象

@Getter
@Setter
@ToString
public class User {private Long id;private String name;private int age;
}
@EnableBatchProcessing
@SpringBootApplication
public class JsonFlatReaderJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;//job--->step---tasklet//job--->step-chunk----reader---writer@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {items.forEach(System.err::println);}};}@Beanpublic JsonItemReader<User> itemReader(){//当前读取json使用阿里jackson 框架//参数:读取json格式文件转换成具体对象类型: User.classJacksonJsonObjectReader<User> jsonObjectReader = new JacksonJsonObjectReader<>(User.class);ObjectMapper objectMapper = new ObjectMapper();jsonObjectReader.setMapper(objectMapper);return new JsonItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("user.json")).jsonObjectReader(jsonObjectReader).build();}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(1) //一次读多少数据.reader(itemReader()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("json-flat-reader-job").start(step()).build();}public static void main(String[] args) {SpringApplication.run(JsonFlatReaderJob.class, args);}}

上面代码核心在:userItemReader() 实例方法,明确指定转换成json格式需要使用转换器,本次使用的Jackson

9.3 读数据库

下面是一张用户表user, 如果数据是存放在数据库中,那么又该怎么读取?

CREATE TABLE `user` (`id` bigint NOT NULL AUTO_INCREMENT COMMENT '主键',`name` varchar(255) DEFAULT NULL COMMENT '用户名',`age` int DEFAULT NULL COMMENT '年龄',PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8mb3;
INSERT INTO `user` VALUES (1, 'dafei', 18);
INSERT INTO `user` VALUES (2, 'xiaofei', 17);
INSERT INTO `user` VALUES (3, 'zhongfei', 16);
INSERT INTO `user` VALUES (4, 'laofei', 15);
INSERT INTO `user` VALUES (5, 'feifei', 14);

Spring Batch 提供2种从数据库中读取数据的方式:

9.3.1 基于游标方式

image-20221205155534928

游标是数据库中概念,可以简单理解为一个指针

image-20221205152543915

游标遍历时,获取数据表中某一条数据,如果使用JDBC操作,游标指向的那条数据会被封装到ResultSet中,如果想将数据从ResultSet读取出来,需要借助Spring Batch 提供RowMapper 实现表数据与实体对象的映射。

user表数据---->User对象

Spring Batch JDBC 实现数据表读取需要做几个准备

1>实体对象User

@Getter
@Setter
@ToString
public class User {private Long id;private String name;private int age;
}

2>RowMapper 表与实体对象映射实现类

public class UserRowMapper implements RowMapper<User> {@Overridepublic User mapRow(ResultSet rs, int rowNum) throws SQLException {User user = new User();user.setId(rs.getLong("id"));user.setName(rs.getString("name"));user.setAge(rs.getInt("age"));return user;}
}

3>JdbcCursorItemReader编写

@EnableBatchProcessing
@SpringBootApplication
public class CursorDBReaderJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Autowiredprivate DataSource dataSource;//job--->step---tasklet//job--->step-chunk----reader---writer@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {items.forEach(System.err::println);}};}//将列数据与对象属性一一映射@Beanpublic UserRowMapper userRowMapper(){return new UserRowMapper();}//使用jdbc游标方式读数据@Beanpublic JdbcCursorItemReader<User> itemReader(){return new JdbcCursorItemReaderBuilder<User>().name("userItemReader")//连接数据库, spring容器自己实现.dataSource(dataSource)//执行sql查询数据, 将返回的数据以游标形式一条一条读.sql("select * from user")//数据库读出数据跟用户对象属性一一映射.rowMapper(userRowMapper()).build();}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(2) //一次读多少数据.reader(itemReader()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("cursor-db-reader-job1").start(step()).incrementer(new RunIdIncrementer()).build();}public static void main(String[] args) {SpringApplication.run(CursorDBReaderJob.class, args);}}

解析:

1>操作数据库,需要引入DataSource

2>留意userItemReader() 方法,需要明确指定操作数据库sql

3>留意userItemReader() 方法,需要明确指定游标回来之后,数据映射规则:rowMapper

这里要注意,如果sql需要where 条件,需要额外定义

比如: 查询 age > 16的用户

@Bean
public JdbcCursorItemReader<User> userItemReader(){return new JdbcCursorItemReaderBuilder<User>().name("userCursorItemReader").dataSource(dataSource).sql("select * from user where age < ?").rowMapper(userRowMapper())//拼接参数.preparedStatementSetter(new ArgumentPreparedStatementSetter(new Object[]{16})).build();
}

9.3.2 基于分页方式

image-20221205155552416

游标的方式是查询出所有满足条件的数据,然后一条一条读取,而分页是按照指定设置的pageSize数,一次性读取pageSize条。

分页查询方式需要几个要素

1>实体对象,跟游标方式一样

2>RowMapper映射对象,跟游标方式一样

3>数据源,跟游标方式一样

4>PagingQueryProvider 分页逻辑提供者

@EnableBatchProcessing
@SpringBootApplication
public class PageDBReaderJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Autowiredprivate DataSource dataSource;//job--->step---tasklet//job--->step-chunk----reader---writer@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {items.forEach(System.err::println);}};}//将列数据与对象属性一一映射@Beanpublic UserRowMapper userRowMapper(){return new UserRowMapper();}//分页查询逻辑@Beanpublic PagingQueryProvider pagingQueryProvider() throws Exception {SqlPagingQueryProviderFactoryBean factoryBean = new SqlPagingQueryProviderFactoryBean();factoryBean.setDataSource(dataSource);factoryBean.setSelectClause("select *");  //查询语句factoryBean.setFromClause("from user");  //查询表factoryBean.setWhereClause("where age > :age");  //:age表示占位符factoryBean.setSortKey("id");return factoryBean.getObject();}// select * from user where .... limit ?,pageSize//使用jdbc游标方式读数据@Beanpublic JdbcPagingItemReader<User> itemReader() throws Exception {Map<String, Object> map = new HashMap<>();map.put("age", 16);return new JdbcPagingItemReaderBuilder<User>().name("userItemReader2").dataSource(dataSource).rowMapper(userRowMapper()).queryProvider(pagingQueryProvider())  //分页逻辑.parameterValues(map) //sql条件.pageSize(10).build();}@Beanpublic Step step() throws Exception {return stepBuilderFactory.get("step3").<User, User>chunk(2) //一次读多少数据.reader(itemReader()).writer(itemWriter()).build();}@Beanpublic Job job() throws Exception {return jobBuilderFactory.get("page-db-reader-job2").start(step()).build();}public static void main(String[] args) {SpringApplication.run(PageDBReaderJob.class, args);}}

解析:

1>需要提供pagingQueryProvider 用于拼接分页SQL

2>userItemReader() 组装分页查询逻辑。

9.4 读取异常

任何输入都有可能存在异常情况,那Spring Batch 如何应对输入异常情况呢? 3种操作逻辑:

1>跳过异常记录

这里逻辑是当Spring Batch 在读取数据时,根据各种意外情况抛出不同异常,ItemReader 可以按照约定跳过指定的异常,同时也可以限制跳过次数。

@Bean
public Step step() throws Exception {return stepBuilderFactory.get("step1").<User, User>chunk(1).reader(userItemReader()).writer(itemWriter()).faultTolerant() //容错.skip(Exception.class)  //跳过啥异常.noSkip(RuntimeException.class)  //不能跳过啥异常.skipLimit(10)  //跳过异常次数.skipPolicy(new SkipPolicy() {@Overridepublic boolean shouldSkip(Throwable t, int skipCount) throws SkipLimitExceededException {//定制跳过异常与异常次数return false;}}).build();}

如果出错直接跳过去,这操作有点自欺欺人,并不是优雅的解决方案。开发可选下面这种。

2>异常记录记日志

所谓记录日志,就是当ItemReader 读取数据抛出异常时,将具体数据信息记录下来,方便后续人工接入。

具体实现使用ItemReader监听器(直接设置给Step)。

public class ErrorItemReaderListener implements ItemReadListener {@Overridepublic void beforeRead() {}@Overridepublic void afterRead(Object item) {}@Overridepublic void onReadError(Exception ex) {System.out.println("记录读数据相关信息...");}
}

3>放弃处理

这种异常在处理不是很重要数据时候使用。

十、ItemProcessor

前面我们多次讲过,居于块的读与写,中间还夹着一个ItemProcessor 条目处理。当我们通过ItemReader 将数据读取出来之后,你面临2个选择:

1>直接将数据转向输出

2>对读入的数据进行再加工。

如果选择第一种,那ItemProcessor 可以不用出现,如果选择第二种,就需要引入ItemProcessor 条目处理组件啦。

Spring Batch 为Processor 提供默认的处理器与自定义处理器2种模式以满足各种需求。

10.1 默认ItemProcessor

Spring Batch 提供现成的ItemProcessor 组件有4种:

10.1.1 ValidatingItemProcessor:校验处理器

这个好理解,很多时候ItemReader读出来的数据是相对原始的数据,并没有做过多的校验

数据文件users-validate.txt

1##18
2##16
3#laofei#20
4#zhongfei#19
5#feifei#15

比如上面文本数据,第一条,第二条name数值没有指定,在ItemReader 读取之后,必定将 “” 空串封装到User name属性中,语法上没有错,但逻辑上可以做文章,比如:用户名不为空。

解决上述问题,可以使用Spring Batch 提供ValidatingItemProcessor 校验器处理。

接下来我们看下ValidatingItemProcessor 怎么实现

1>导入校验依赖

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId>
</dependency>

2>定义实体对象

@Getter
@Setter
@ToString
public class User {private Long id;@NotBlank(message = "用户名不能为null或空串")private String name;private int age;
}

3>实现

@SpringBootApplication
@EnableBatchProcessing
public class ValidationProcessorJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic FlatFileItemReader<User> userItemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("users-validate.txt")).delimited().delimiter("#").names("id", "name", "age").targetType(User.class).build();}@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {items.forEach(System.err::println);System.out.println("--------------------" + items.size());}};}@Beanpublic BeanValidatingItemProcessor<User> beanValidatingItemProcessor(){BeanValidatingItemProcessor<User> beanValidatingItemProcessor = new BeanValidatingItemProcessor<>();beanValidatingItemProcessor.setFilter(true);  //不满足条件丢弃数据return beanValidatingItemProcessor;}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(2).reader(userItemReader()).processor(beanValidatingItemProcessor()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("validate-processor-job4").start(step()).incrementer(new RunIdIncrementer()).build();}public static void main(String[] args) {SpringApplication.run(ValidationProcessorJob.class, args);}
}

解析:

1>核心是beanValidatingItemProcessor() 实例方法,核心BeanValidatingItemProcessor 类是Spring Batch 提供现成的Validator校验类,这里直接使用即可。BeanValidatingItemProcessor 是 ValidatingItemProcessor 子类

2> step()实例方法,多了**.processor(beanValidatingItemProcessor())** 操作,引入ItemProcessor 组件。

10.1.2 ItemProcessorAdapter:适配器处理器

开发中,很多的校验逻辑已经有现成的啦,那做ItemProcessor处理时候,是否能使用现成逻辑呢?答案 是:yes

比如:现有处理逻辑:将User对象中name转换成大写

public class UserServiceImpl{public User toUppeCase(User user){user.setName(user.getName().toUpperCase());return user;}
}

新建users-adapter.txt 文件,用于测试

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

完整的逻辑

@SpringBootApplication
@EnableBatchProcessing
public class AdapterProcessorJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic FlatFileItemReader<User> userItemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("users-adapter.txt")).delimited().delimiter("#").names("id", "name", "age").targetType(User.class).build();}@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {items.forEach(System.err::println);}};}@Beanpublic UserServiceImpl userService(){return new UserServiceImpl();}@Beanpublic ItemProcessorAdapter<User, User> itemProcessorAdapter(){ItemProcessorAdapter<User, User> adapter = new ItemProcessorAdapter<>();adapter.setTargetObject(userService());adapter.setTargetMethod("toUppeCase");return adapter;}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(1).reader(userItemReader()).processor(itemProcessorAdapter()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("adapter-processor-job").start(step()).build();}public static void main(String[] args) {SpringApplication.run(AdapterProcessorJob.class, args);}
}

解析:

观察itemProcessorAdapter()实例方法,引入ItemProcessorAdapter 适配器类,绑定自定义的UserServiceImpl 类与toUppeCase方法,当ItemReader 读完之后,马上调用UserServiceImpl 类的toUppeCase 方法处理逻辑。方法传参数会被忽略,ItemProcessor会自动处理。

10.1.3 ScriptItemProcessor:脚本处理器

前面要实现User name 变大写,需要大费周折,又定义类,又是定义方法,能不能简化一点。答案也是yes, Spring Batch 提供js脚本的形式,将上面逻辑写到js文件中,加载这文件,就可以实现,省去定义类,定义方法的麻烦。

需求:使用js脚本方式实现用户名大写处理

userScript.js

item.setName(item.getName().toUpperCase());
item;

这里注意:

1>item是约定的单词,表示ItemReader读除来每个条目

2>userScript.js文件放置到resource资源文件中

完整代码

package com.langfeiyes.batch._28_itemprocessor_script;import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.support.ScriptItemProcessor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;import java.util.List;@SpringBootApplication
@EnableBatchProcessing
public class ScriptProcessorJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic FlatFileItemReader<User> userItemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("users-adapter.txt")).delimited().delimiter("#").names("id", "name", "age").targetType(User.class).build();}@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {items.forEach(System.err::println);}};}@Beanpublic ScriptItemProcessor<User, User> scriptItemProcessor(){ScriptItemProcessor<User, User> scriptItemProcessor = new ScriptItemProcessor();scriptItemProcessor.setScript(new ClassPathResource("userScript.js"));return scriptItemProcessor;}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(1).reader(userItemReader()).processor(scriptItemProcessor()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("script-processor-job").start(step()).build();}public static void main(String[] args) {SpringApplication.run(ScriptProcessorJob.class, args);}
}

解析:

核心还是scriptItemProcessor() 实例方法,ScriptItemProcessor 类用于加载js 脚本并处理js脚本。

10.1.4 CompositeItemProcessor:组合处理器

CompositeItemProcessor是一个ItemProcessor处理组合,类似于过滤器链,数据先经过第一个处理器,然后再经过第二个处理器,直到最后。前一个处理器处理的结果,是后一个处理器的输出。

image-20221206120116269

需求:将解析出来用户name进行判空处理,并将name属性转换成大写

1>读取文件:users-validate.txt

1##18
2##16
3#laofei#20
4#zhongfei#19
5#feifei#15

2>封装的实体对象

@Getter
@Setter
@ToString
public class User {private Long id;@NotBlank(message = "用户名不能为null或空串")private String name;private int age;
}

3>用于转换大写工具类

public class UserServiceImpl {public User toUppeCase(User user){user.setName(user.getName().toUpperCase());return user;}
}

4>完整代码

package com.langfeiyes.batch._29_itemprocessor_composite;import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.adapter.ItemProcessorAdapter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.support.CompositeItemProcessor;
import org.springframework.batch.item.validator.BeanValidatingItemProcessor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;import java.util.Arrays;
import java.util.List;@SpringBootApplication
@EnableBatchProcessing
public class CompositeProcessorJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic FlatFileItemReader<User> userItemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("users-validate.txt")).delimited().delimiter("#").names("id", "name", "age").targetType(User.class).build();}@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {items.forEach(System.err::println);}};}@Beanpublic UserServiceImpl userService(){return new UserServiceImpl();}@Beanpublic BeanValidatingItemProcessor<User> beanValidatingItemProcessor(){BeanValidatingItemProcessor<User> beanValidatingItemProcessor = new BeanValidatingItemProcessor<>();beanValidatingItemProcessor.setFilter(true);  //不满足条件丢弃数据return beanValidatingItemProcessor;}@Beanpublic ItemProcessorAdapter<User, User> itemProcessorAdapter(){ItemProcessorAdapter<User, User> adapter = new ItemProcessorAdapter<>();adapter.setTargetObject(userService());adapter.setTargetMethod("toUppeCase");return adapter;}@Beanpublic CompositeItemProcessor<User, User>  compositeItemProcessor(){CompositeItemProcessor<User, User> compositeItemProcessor = new CompositeItemProcessor<>();compositeItemProcessor.setDelegates(Arrays.asList(beanValidatingItemProcessor(), itemProcessorAdapter()));return  compositeItemProcessor;}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(1).reader(userItemReader()).processor(compositeItemProcessor()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("composite-processor-job").start(step()).build();}public static void main(String[] args) {SpringApplication.run(CompositeProcessorJob.class, args);}
}

解析:

核心代码:compositeItemProcessor() 实例方法,使用setDelegates 操作将其他ItemProcessor 处理合并成一个。

10.2 自定义ItemProcessor处理器

除去上面默认的几种处理器外,Spring Batch 也允许我们自定义,具体做法只需要实现ItemProcessor接口即可

需求:自定义处理器,筛选出id为偶数的用户

1>定义读取文件user.txt

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

2>定义实体对象

@Getter
@Setter
@ToString
public class User {private Long id;private String name;private int age;
}

3>自定义处理器

//自定义
public class CustomizeItemProcessor implements ItemProcessor<User,User> {@Overridepublic User process(User item) throws Exception {System.out.println("CustomizeItemProcessor process " + item);//id 为偶数的用户放弃//返回null时候 读入的item会被放弃,不会进入itemwriterreturn item.getId() % 2 != 0 ? item : null;}
}

4>完整代码

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;import java.util.List;@SpringBootApplication
@EnableBatchProcessing
public class CustomizeProcessorJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic FlatFileItemReader<User> userItemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("users.txt")).delimited().delimiter("#").names("id", "name", "age").targetType(User.class).build();}@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {System.out.println("writer " + items.size());items.forEach(System.err::println);}};}@Beanpublic CustomizeItemProcessor customizeItemProcessor(){return new CustomizeItemProcessor();}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(2).reader(userItemReader()).processor(customizeItemProcessor()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("customize-processor-job").start(step()).build();}public static void main(String[] args) {SpringApplication.run(CustomizeProcessorJob.class, args);}
}

十一、ItemWriter

有输入那肯定有输出,前面讲了输入ItemReader,接下来就看本篇的输出器:ItemWriter, Spring Batch提供的数据输出组件与数据输入组件是成对,也就是说有啥样子的输入组件,就有啥样子的输出组件。

11.1 输出平面文件

当将读入的数据输出到纯文本文件时,可以通过FlatFileItemWriter 输出器实现。

需求:将user.txt中数据读取出来,输出到outUser.txt文件中

1>定义user.txt文件

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

2>定义实体对象

@Getter
@Setter
@ToString
public class User {private Long id;private String name;private int age;
}

3>实现代码

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;import java.util.List;@SpringBootApplication
@EnableBatchProcessing
public class FlatWriteJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic FlatFileItemReader<User> userItemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("users.txt")).delimited().delimiter("#").names("id", "name", "age").targetType(User.class).build();}@Beanpublic FlatFileItemWriter<User> itemWriter(){return new FlatFileItemWriterBuilder<User>().name("userItemWriter").resource(new PathResource("c:/outUser.txt"))  // 输出的文件.formatted()                                   // 数据格式指定.format("id: %s,姓名:%s,年龄:%s")              // 输出数据格式.names("id", "name", "age")                    // 需要输出属性.build();}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(1).reader(userItemReader()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("flat-writer-job").start(step()).build();}public static void main(String[] args) {SpringApplication.run(FlatWriteJob.class, args);}
}

解析:

上面代码核心是itemWriter() 方法,设置到itemWrite读取器配置与输出

id: 1,姓名:dafei,年龄:18
id: 2,姓名:xiaofei,年龄:16
id: 3,姓名:laofei,年龄:20
id: 4,姓名:zhongfei,年龄:19
id: 5,姓名:feifei,年龄:15

一些拓展

@Bean
public FlatFileItemWriter<User> itemWriter(){return new FlatFileItemWriterBuilder<User>().name("userItemWriter").resource(new PathResource("c:/outUser.txt"))  // 输出的文件.formatted()  //数据格式指定.format("id: %s,姓名:%s,年龄:%s")              // 输出数据格式.names("id", "name", "age")                    // 需要输出属性.shouldDeleteIfEmpty(true)   // 如果读入数据为空,输出时创建文件直接删除.shouldDeleteIfExists(true)  // 如果输出文件已经存在,则删除.append(true)                // 如果输出文件已经存在, 不删除,直接追加到现有文件中.build();
}

11.2 输出Json文件

当将读入的数据输出到Json文件时,可以通过JsonFileItemWriter输出器实现。

需求:将user.txt中数据读取出来,输出到outUser.json文件中

沿用上面的user.txt, user对象将数据输出到outUser.json

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;@SpringBootApplication
@EnableBatchProcessing
public class JsonWriteJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic FlatFileItemReader<User> userItemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("users.txt")).delimited().delimiter("#").names("id", "name", "age").targetType(User.class).build();}@Beanpublic JacksonJsonObjectMarshaller<User> objectMarshaller(){JacksonJsonObjectMarshaller marshaller = new JacksonJsonObjectMarshaller();return marshaller;}@Beanpublic JsonFileItemWriter<User> itemWriter(){return new JsonFileItemWriterBuilder<User>().name("jsonUserItemWriter").resource(new PathResource("c:/outUser.json")).jsonObjectMarshaller(objectMarshaller()).build();}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(2).reader(userItemReader()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("json-writer-job").start(step()).build();}public static void main(String[] args) {SpringApplication.run(JsonWriteJob.class, args);}
}

结果:

[{"id":1,"name":"dafei","age":18},{"id":2,"name":"xiaofei","age":16},{"id":3,"name":"laofei","age":20},{"id":4,"name":"zhongfei","age":19},{"id":5,"name":"feifei","age":15}
]

解析:

1>itemWriter() 实例方法构建JsonFileItemWriter 实例,需要明确指定Json格式装配器

2>Spring Batch默认提供装配器有2个:JacksonJsonObjectMarshaller GsonJsonObjectMarshaller 分别对应Jackson 跟 Gson 2种json格式解析逻辑,本案例用的是Jackson

11.3 输出数据库

当将读入的数据需要输出到数据库时,可以通过JdbcBatchItemWriter输出器实现。

需求:将user.txt中数据读取出来,输出到数据库user表中

沿用上面的user.txt, user对象将数据输出到user表中

1>定义操作数据库预编译类

//写入数据库需要操作insert sql, 使用预编译就需要明确指定参数值
public class UserPreStatementSetter implements ItemPreparedStatementSetter<User> {@Overridepublic void setValues(User item, PreparedStatement ps) throws SQLException {ps.setLong(1, item.getId());ps.setString(2, item.getName());ps.setInt(3, item.getAge());}
}

2>完整代码

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.database.builder.JdbcBatchItemWriterBuilder;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;import javax.sql.DataSource;@SpringBootApplication
@EnableBatchProcessing
public class JdbcWriteJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Autowiredprivate DataSource dataSource;@Beanpublic FlatFileItemReader<User> userItemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("users.txt")).delimited().delimiter("#").names("id", "name", "age").targetType(User.class).build();}@Beanpublic UserPreStatementSetter preStatementSetter(){return new UserPreStatementSetter();}@Beanpublic JdbcBatchItemWriter<User>  itemWriter(){return new JdbcBatchItemWriterBuilder<User>().dataSource(dataSource).sql("insert into user(id, name, age) values(?,?,?)").itemPreparedStatementSetter(preStatementSetter()).build();}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(1).reader(userItemReader()).writer(itemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("jdbc-writer-job").start(step()).build();}public static void main(String[] args) {SpringApplication.run(JdbcWriteJob.class, args);}
}

解析:

核心代码在itemWriter() 实例方法中, 需要1>准备构建JdbcBatchItemWriter实例 2>提前准备数据, 3>准备sql语句 4>准备参数绑定器

11.4 输出多终端

上面几种输出方法都是一对一,真实开发可能没那么简单了,可能存在一对多,多个终端输出,此时怎么办?答案是使用Spring Batch 提供的CompositeItemWriter 组合输出器。

需求:将user.txt中数据读取出来,输出到outUser.txt/outUser.json/数据库user表中

沿用上面的user.txt, user对象将数据输出到outUser.txt/outUser.json/user表中

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.database.builder.JdbcBatchItemWriterBuilder;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.batch.item.support.CompositeItemWriter;
import org.springframework.batch.item.support.builder.CompositeItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;import javax.sql.DataSource;
import java.util.Arrays;@SpringBootApplication
@EnableBatchProcessing
public class CompositeWriteJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Autowiredpublic DataSource dataSource;@Beanpublic FlatFileItemReader<User> userItemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("users.txt")).delimited().delimiter("#").names("id", "name", "age").targetType(User.class).build();}@Beanpublic FlatFileItemWriter<User> flatFileItemWriter(){return new FlatFileItemWriterBuilder<User>().name("userItemWriter").resource(new PathResource("c:/outUser.txt")).formatted()  //数据格式指定.format("id: %s,姓名:%s,年龄:%s")  //输出数据格式.names("id", "name", "age")  //需要输出属性.build();}@Beanpublic JacksonJsonObjectMarshaller<User> objectMarshaller(){JacksonJsonObjectMarshaller marshaller = new JacksonJsonObjectMarshaller();return marshaller;}@Beanpublic JsonFileItemWriter<User> jsonFileItemWriter(){return new JsonFileItemWriterBuilder<User>().name("jsonUserItemWriter").resource(new PathResource("c:/outUser.json")).jsonObjectMarshaller(objectMarshaller()).build();}@Beanpublic UserPreStatementSetter preStatementSetter(){return new UserPreStatementSetter();}@Beanpublic JdbcBatchItemWriter<User> jdbcBatchItemWriter(){return new JdbcBatchItemWriterBuilder<User>().dataSource(dataSource).sql("insert into user(id, name, age) values(?,?,?)").itemPreparedStatementSetter(preStatementSetter()).build();}@Beanpublic CompositeItemWriter<User> compositeItemWriter(){return new CompositeItemWriterBuilder<User>().delegates(Arrays.asList(flatFileItemWriter(), jsonFileItemWriter(), jdbcBatchItemWriter())).build();}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(1).reader(userItemReader()).writer(compositeItemWriter()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("composite-writer-job").start(step()).build();}public static void main(String[] args) {SpringApplication.run(CompositeWriteJob.class, args);}
}

解析:

代码没有啥技术难度,都是将前面的几种方式通过CompositeItemWriter 类整合在一起

@Bean
public CompositeItemWriter<User> compositeItemWriter(){return new CompositeItemWriterBuilder<User>().delegates(Arrays.asList(flatFileItemWriter(), jsonFileItemWriter(), jdbcBatchItemWriter())).build();
}

十二、Spring Batch 高级

前面讲的Spring Batch 基本上能满足日常批处理了,下面则是Spring Batch 高级部分内容,大家可以自己选择了解。

12.1 多线程步骤

默认的情况下,步骤基本上在单线程中执行,那能不能在多线程环境执行呢?答案肯定是yes,但是也要注意,多线程环境步骤执行一定要慎重。原因:多线程环境下,步骤是要设置不可重启

Spring Batch 的多线程步骤是使用Spring 的 TaskExecutor(任务执行器)实现的。约定每一个块开启一个线程独立执行

image-20221207161556238

需求:分5个块处理user-thread.txt文件

1>编写user-thread.txt文件

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15
6#zhangsan#14
7#lisi#13
8#wangwu#12
9#zhaoliu#11
10#qianqi#10

2>定义实体对象

@Getter
@Setter
@ToString
public class User {private Long id;private String name;private int age;
}

3>完整代码

import lombok.extern.slf4j.Slf4j;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;import java.util.List;@Slf4j
@SpringBootApplication
@EnableBatchProcessing
public class ThreadStepJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic FlatFileItemReader<User> userItemReader(){log.info("userItemReader");FlatFileItemReader<User> reader = new FlatFileItemReaderBuilder<User>().name("userItemReader").saveState(false) // 防止状态被覆盖.resource(new ClassPathResource("user-thread.txt")).delimited().delimiter("#").names("id", "name", "age").targetType(User.class).build();return reader;}@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {log.info("准备写入数据...{}, {}", items.size(), items);}};}@Beanpublic Step step(){return stepBuilderFactory.get("step1").<User, User>chunk(2).reader(userItemReader()).writer(itemWriter()).taskExecutor(new SimpleAsyncTaskExecutor()).build();}@Beanpublic Job job(){return jobBuilderFactory.get("thread-step-job").start(step()).incrementer(new RunIdIncrementer()).build();}public static void main(String[] args) {SpringApplication.run(ThreadStepJob.class, args);}
}

4>结果

08:28:39.141  INFO 4152 --- [           main] com.zzhua.demo01.ThreadStepJob           : Started ThreadStepJob in 4.598 seconds (JVM running for 5.41)
08:28:39.144  INFO 4152 --- [           main] o.s.b.a.b.JobLauncherApplicationRunner   : Running default command line with: []
08:28:39.347  INFO 4152 --- [           main] o.s.b.c.l.support.SimpleJobLauncher      : Job: [SimpleJob: [name=thread-step-job]] launched with the following parameters: [{run.id=8}]
08:28:39.416  INFO 4152 --- [           main] o.s.batch.core.job.SimpleStepHandler     : Executing step: [step1]
08:28:39.469  INFO 4152 --- [cTaskExecutor-4] com.zzhua.demo01.ThreadStepJob           : 准备写入数据...2, [User(id=2, name=xiaofei, age=16), User(id=5, name=feifei, age=15)]
08:28:39.469  INFO 4152 --- [cTaskExecutor-1] com.zzhua.demo01.ThreadStepJob           : 准备写入数据...2, [User(id=1, name=dafei, age=18), User(id=6, name=zhangsan, age=14)]
08:28:39.469  INFO 4152 --- [cTaskExecutor-3] com.zzhua.demo01.ThreadStepJob           : 准备写入数据...2, [User(id=3, name=laofei, age=20), User(id=7, name=lisi, age=13)]
08:28:39.469  INFO 4152 --- [cTaskExecutor-2] com.zzhua.demo01.ThreadStepJob           : 准备写入数据...2, [User(id=4, name=zhongfei, age=19), User(id=8, name=wangwu, age=12)]
08:28:39.493  INFO 4152 --- [cTaskExecutor-5] com.zzhua.demo01.ThreadStepJob           : 准备写入数据...2, [User(id=9, name=zhaoliu, age=11), User(id=10, name=qianqi, age=10)]
08:28:39.540  INFO 4152 --- [           main] o.s.batch.core.step.AbstractStep         : Step: [step1] executed in 123ms
08:28:39.554  INFO 4152 --- [           main] o.s.b.c.l.support.SimpleJobLauncher      : Job: [SimpleJob: [name=thread-step-job]] completed with the following parameters: [{run.id=8}] and the following status: [COMPLETED] in 166ms

解析

1:userItemReader() 加上saveState(false) Spring Batch 提供大部分的ItemReader是有状态的,作业重启基本通过状态来确定作业停止位置,而在多线程环境中,如果对象维护状态被多个线程访问,可能存在线程间状态相互覆盖问题。所以设置为false表示关闭状态,但这也意味着作业不能重启了。

2:step() 方法加上**.taskExecutor(new SimpleAsyncTaskExecutor())** 为作业步骤添加了多线程处理能力,以块为单位,一个块一个线程,观察上面的结果,很明显能看出输出的顺序是乱序的。改变 job 的名字再执行,会发现输出数据每次都不一样。

12.2 并行步骤

并行步骤,指的是某2个或者多个步骤同时执行。比如下图

image-20221207171233826

图中,流程从步骤1执行,然后执行步骤2, 步骤3,当步骤2/3执行结束之后,在执行步骤4.

设想一种场景,当读取2个c或者多个互不关联的文件时,可以多个文件同时读取,这个就是并行步骤。

需求:现有user-parallel.txt, user-parallel.json 2个文件将它们中数据读入内存

1>编写user-parallel.txt, user-parallel.json

6#zhangsan#14
7#lisi#13
8#wangwu#12
9#zhaoliu#11
10#qianqi#10
[{"id":1, "name":"dafei", "age":18},{"id":2, "name":"xiaofei", "age":17},{"id":3, "name":"zhongfei", "age":16},{"id":4, "name":"laofei", "age":15},{"id":5, "name":"feifei", "age":14}
]

2>编写实体对象

@Getter
@Setter
@ToString
public class User {private Long id;private String name;private int age;
}

3>代码实现

import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.job.builder.FlowBuilder;
import org.springframework.batch.core.job.flow.Flow;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectReader;
import org.springframework.batch.item.json.JsonItemReader;
import org.springframework.batch.item.json.builder.JsonItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;import java.util.List;@SpringBootApplication
@EnableBatchProcessing
public class ParallelStepJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Beanpublic JsonItemReader<User> jsonItemReader(){ObjectMapper objectMapper = new ObjectMapper();JacksonJsonObjectReader<User> jsonObjectReader = new JacksonJsonObjectReader<>(User.class);jsonObjectReader.setMapper(objectMapper);return new JsonItemReaderBuilder<User>().name("userJsonItemReader").jsonObjectReader(jsonObjectReader).resource(new ClassPathResource("user-parallel.json")).build();}@Beanpublic FlatFileItemReader<User> flatItemReader(){return new FlatFileItemReaderBuilder<User>().name("userItemReader").resource(new ClassPathResource("user-parallel.txt")).delimited().delimiter("#").names("id", "name", "age").targetType(User.class).build();}@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {items.forEach(System.err::println);}};}@Beanpublic Step jsonStep(){return stepBuilderFactory.get("jsonStep").<User, User>chunk(2).reader(jsonItemReader()).writer(itemWriter()).build();}@Beanpublic Step flatStep(){return stepBuilderFactory.get("step2").<User, User>chunk(2).reader(flatItemReader()).writer(itemWriter()).build();}@Beanpublic Job parallelJob(){//线程1-读user-parallel.txtFlow parallelFlow1 = new FlowBuilder<Flow>("parallelFlow1").start(flatStep()).build();//线程2-读user-parallel.jsonFlow parallelFlow2 = new FlowBuilder<Flow>("parallelFlow2").start(jsonStep()).split(new SimpleAsyncTaskExecutor()).add(parallelFlow1).build();return jobBuilderFactory.get("parallel-step-job").start(parallelFlow2).end().build();}public static void main(String[] args) {SpringApplication.run(ParallelStepJob.class, args);}
}

结果

User(id=6, name=zhangsan, age=14)
User(id=7, name=lisi, age=13)
User(id=8, name=wangwu, age=12)
User(id=9, name=zhaoliu, age=11)
User(id=1, name=dafei, age=18)
User(id=2, name=xiaofei, age=17)
User(id=10, name=qianqi, age=10)
User(id=3, name=zhongfei, age=16)
User(id=4, name=laofei, age=15)
User(id=5, name=feifei, age=14)

解析:

1:jsonItemReader() flatItemReader() 定义2个读入操作,分别读json格式跟普通文本格式

2:parallelJob() 配置job,需要指定并行的flow步骤,先是parallelFlow1然后是parallelFlow2 , 2个步骤间使用**.split(new SimpleAsyncTaskExecutor())** 隔开,表示线程池开启2个线程,分别处理parallelFlow1, parallelFlow2 2个步骤。

12.3 分区步骤

分区:有划分,区分意思,在SpringBatch 分区步骤讲的是给执行步骤区分上下级。

上级: 主步骤(Master Step)

下级: 从步骤–工作步骤(Work Step)

主步骤是领导,不用干活,负责管理从步骤,从步骤是下属,必须干活。

一个主步骤下辖管理多个从步骤。

注意: 从步骤,不管多小,它也一个完整的Spring Batch 步骤,负责各自的读入、处理、写入等

分区步骤结构图

image-20221207172733375

分区步骤一般用于海量数据的处理上,其采用是分治思想。主步骤将大的数据划分多个小的数据集,然后开启多个从步骤,要求每个从步骤负责一个数据集。当所有从步骤处理结束,整作业流程才算结束。

分区器

主步骤核心组件,负责数据分区,将完整的数据拆解成多个数据集,然后指派给从步骤,让其执行。

拆分规则由Partitioner分区器接口定制,默认的实现类:MultiResourcePartitioner

public interface Partitioner {Map<String, ExecutionContext> partition(int gridSize);
}

Partitioner 接口只有唯一的方法:partition 参数gridSize表示要分区的大小,可以理解为要开启多个worker步骤,返回值是一个Map, 其中key:worker步骤名称, value:worker步骤启动需要参数值,一般包含分区元数据,比如起始位置,数据量等。

分区处理器

主步骤核心组件,统一管理work 步骤, 并给work步骤指派任务。

管理规则由PartitionHandler 接口定义,默认的实现类:TaskExecutorPartitionHandler

需求:下面几个文件将数据读入内存

分析:

image-20230114212150401

步骤1:准备数据

user1-10.txt

1#dafei#18
2#dafei#18
3#dafei#18
4#dafei#18
5#dafei#18
6#dafei#18
7#dafei#18
8#dafei#18
9#dafei#18
10#dafei#18

user11-20.txt

11#dafei#18
12#dafei#18
13#dafei#18
14#dafei#18
15#dafei#18
16#dafei#18
17#dafei#18
18#dafei#18
19#dafei#18
20#dafei#18

user21-30.txt

21#dafei#18
22#dafei#18
23#dafei#18
24#dafei#18
25#dafei#18
26#dafei#18
27#dafei#18
28#dafei#18
29#dafei#18
30#dafei#18

user31-40.txt

31#dafei#18
32#dafei#18
33#dafei#18
34#dafei#18
35#dafei#18
36#dafei#18
37#dafei#18
38#dafei#18
39#dafei#18
40#dafei#18

user41-50.txt

41#dafei#18
42#dafei#18
43#dafei#18
44#dafei#18
45#dafei#18
46#dafei#18
47#dafei#18
48#dafei#18
49#dafei#18
50#dafei#18

步骤2:准备实体类

@Getter
@Setter
@ToString
public class User {private Long id;private String name;private int age;
}

步骤3:配置分区逻辑

import org.springframework.batch.core.partition.support.Partitioner;
import org.springframework.batch.item.ExecutionContext;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.Resource;import java.io.IOException;
import java.util.HashMap;
import java.util.Map;//用户文件读取分区器
//作用: 指定从步骤名称 + 配置从步骤需要上下文环境
public class UserPartitioner implements Partitioner {int begin = 1;int end = 10;int range = 10;String text = "user%s-%s.txt";  //名字规则//map: key:从步骤名称  value: 从步骤上下文环境//gridSize : 从步骤个数---当前是5//逻辑://	定义从步骤1---关联上下文环境---指定要处理文件名:file: user1-10.txt//	定义从步骤2---关联上下文环境---指定要处理文件名:file: user11-20.txt//  ...//	定义从步骤5---关联上下文环境---指定要处理文件名:file: user41-50.txt@Overridepublic Map<String, ExecutionContext> partition(int gridSize) {Map<String, ExecutionContext> map = new HashMap<>();for (int i = 0; i < gridSize; i++) {ExecutionContext ex = new ExecutionContext();String name = String.format(text, begin, end);Resource resource = new ClassPathResource(name);// springbatch转换成,单纯使用对象时报错,可以使用的url字符串形式, spring会自动加载try {ex.putString("file",resource.getURL().toExternalForm());} catch (IOException e) {e.printStackTrace();}begin += range;end += range;map.put("user_partition_" + i, ex);}return map;}
}

步骤4:全部代码

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.partition.PartitionHandler;
import org.springframework.batch.core.partition.support.TaskExecutorPartitionHandler;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.Resource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;import java.util.List;@SpringBootApplication
@EnableBatchProcessing
public class PartStepJob {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;//编写从步骤--工作步骤--分区步骤--读操作@Bean@StepScope//多个从步骤共有同个itemreader组件, 不能写死操作文件资源,需要使用变量方式动态指定//@Value("#{stepExecutionContext['file']}")  从步骤的上下文路径中获取要读的资源文件对象//能实现的前提: 步骤上下文中必须有值,这些数据值是在 主步骤的分区器中设置。public FlatFileItemReader<User> itemReader(@Value("#{stepExecutionContext['file']}") Resource resource){return new FlatFileItemReaderBuilder<User>().name("userItemReader")//获取文件.resource(resource)//解析数据--指定解析器使用# 分割--默认是 ,号.delimited().delimiter("#")//按照 # 截取数据之后, 数据怎么命名.names("id", "name", "age")//封装数据--将读取的数据封装到对象:User对象.targetType(User.class).build();}//编写从步骤--工作步骤--分区步骤--写操作@Beanpublic ItemWriter<User> itemWriter(){return new ItemWriter<User>() {@Overridepublic void write(List<? extends User> items) throws Exception {items.forEach(System.err::println);}};}//编写从步骤--工作步骤--分区步骤-@Beanpublic Step workStep(){return  stepBuilderFactory.get("workStep").<User, User>chunk(10).reader(itemReader(null)).writer(itemWriter()).build();}//定义分区器@Beanpublic UserPartitioner userPartitioner(){return new UserPartitioner();}//定义分区处理器@Beanpublic PartitionHandler partitionHandler(){TaskExecutorPartitionHandler handler = new TaskExecutorPartitionHandler();//指定要创建分区步骤/从步骤有几个handler.setGridSize(5);//一个分区步骤/从步骤 是一个独立线程handler.setTaskExecutor(new SimpleAsyncTaskExecutor());//关联从步骤handler.setStep(workStep());try {handler.afterPropertiesSet();} catch (Exception e) {e.printStackTrace();}return handler;}//主步骤@Beanpublic Step masterStep(){return stepBuilderFactory.get("masterStep").partitioner(workStep().getName(), userPartitioner())  // 分区器.partitionHandler(partitionHandler())                  // 分区处理器.build();}//定义作业@Beanpublic Job job(){return jobBuilderFactory.get("part-step-job").start(masterStep()).build();}public static void main(String[] args) {SpringApplication.run(PartStepJob.class, args);}}

结果:

User(id=31, name=dafei, age=18)
User(id=32, name=dafei, age=18)
User(id=33, name=dafei, age=18)
User(id=34, name=dafei, age=18)
User(id=35, name=dafei, age=18)
User(id=36, name=dafei, age=18)
User(id=37, name=dafei, age=18)
User(id=38, name=dafei, age=18)
User(id=39, name=dafei, age=18)
User(id=40, name=dafei, age=18)
User(id=41, name=dafei, age=18)
User(id=42, name=dafei, age=18)
User(id=43, name=dafei, age=18)
User(id=44, name=dafei, age=18)
User(id=45, name=dafei, age=18)
User(id=46, name=dafei, age=18)
User(id=47, name=dafei, age=18)
User(id=48, name=dafei, age=18)
User(id=49, name=dafei, age=18)
User(id=50, name=dafei, age=18)
User(id=21, name=dafei, age=18)
User(id=22, name=dafei, age=18)
User(id=23, name=dafei, age=18)
User(id=24, name=dafei, age=18)
User(id=25, name=dafei, age=18)
User(id=26, name=dafei, age=18)
User(id=27, name=dafei, age=18)
User(id=28, name=dafei, age=18)
User(id=29, name=dafei, age=18)
User(id=30, name=dafei, age=18)
User(id=1, name=dafei, age=18)
User(id=2, name=dafei, age=18)
User(id=3, name=dafei, age=18)
User(id=4, name=dafei, age=18)
User(id=5, name=dafei, age=18)
User(id=6, name=dafei, age=18)
User(id=7, name=dafei, age=18)
User(id=8, name=dafei, age=18)
User(id=9, name=dafei, age=18)
User(id=10, name=dafei, age=18)
User(id=11, name=dafei, age=18)
User(id=12, name=dafei, age=18)
User(id=13, name=dafei, age=18)
User(id=14, name=dafei, age=18)
User(id=15, name=dafei, age=18)
User(id=16, name=dafei, age=18)
User(id=17, name=dafei, age=18)
User(id=18, name=dafei, age=18)
User(id=19, name=dafei, age=18)
User(id=20, name=dafei, age=18)

解析:核心点

1>文件分区器:userPartitioner(), 分别加载5个文件进入到程序

2>文件分区处理器:userPartitionHandler() ,指定要分几个区,由谁来处理

3>分区从步骤:workStep() 指定读逻辑与写逻辑

4>分区文件读取:flatItemReader(),需要传入Resource对象,这个对象在userPartitioner()已经标记为file

5>分区主步骤:masterStep() ,指定分区名称与分区器,指定分区处理器

十三、综合案例

到这,整个Spring Batch 教程知识点就全部讲完了,接下来就使用一个综合案例将讲过核心知识串联起来,再来回顾一遍。

13.1 案例需求

1>先动态生成50w条员工数据,存放在employee.csv文件中

2>启动作业异步读取employee.csv文件,将读到数据写入到employee_temp表,要求记录读与写消耗时间

3>使用分区的方式将employee_temp表的数据读取并写入到employee表

13.2 分析

上面需求存在一定连贯性,为了操作简单,使用springMVC项目, 每一个需求对应一个接口:

1:发起 /dataInit 初始化50w数据进入employee.csv文件

​ 使用技术点:SpringMVC IO

2:发起**/csvToDB** 启动作业,将employee.csv 数据写入employee_temp表, 记录读与写消耗时间

​ 使用技术点:SpringMVC ItemReader JobExecutionListener

​ ItemWriter (如果使用Mybatis框架MyBatisBatchItemWriter/MyBatisPagingItemReaderReader)

3:发起**/dbToDB** 启动作业,将employee_temp数据写入employee表

​ 使用技术点:SpringMVC ItemReader partitioner

​ ItemWriter(如果使用Mybatis框架:MyBatisBatchItemWriter/MyBatisPagingItemReaderReader)

13.3 项目准备

步骤1:新开spring-batch-example

步骤2:导入依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.langfeiyes.ex</groupId><artifactId>spring-batch-example</artifactId><version>1.0-SNAPSHOT</version><properties><maven.compiler.source>11</maven.compiler.source><maven.compiler.target>11</maven.compiler.target></properties><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.3</version><relativePath/></parent><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-batch</artifactId></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.12</version></dependency><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>1.3.2</version></dependency><dependency><groupId>com.alibaba</groupId><artifactId>druid-spring-boot-starter</artifactId><version>1.1.14</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId></dependency></dependencies></project>

步骤3:配置文件

spring:datasource:username: rootpassword: adminurl: jdbc:mysql://127.0.0.1:3306/springbatch?serverTimezone=GMT%2B8&useSSL=false&allowPublicKeyRetrieval=truedriver-class-name: com.mysql.cj.jdbc.Driver# 初始化数据库,文件在依赖jar包中sql:init:schema-locations: classpath:org/springframework/batch/core/schema-mysql.sql#mode: alwaysmode: neverbatch:job:enabled: falsedruid:# 连接池配置#初始化连接池的连接数量 大小,最小,最大initial-size: 10min-idle: 10max-active: 20#配置获取连接等待超时的时间max-wait: 60000#配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒time-between-eviction-runs-millis: 60000# 配置一个连接在池中最小生存的时间,单位是毫秒min-evictable-idle-time-millis: 30000validation-query: SELECT 1 FROM DUALtest-while-idle: truetest-on-borrow: truetest-on-return: false# 是否缓存preparedStatement,也就是PSCache  官方建议MySQL下建议关闭   个人建议如果想用SQL防火墙 建议打开pool-prepared-statements: falsemax-pool-prepared-statement-per-connection-size: 20mybatis:configuration:default-executor-type: batchmapper-locations:- classpath:mapper/*.xmljob:data:path: D:/spri,ng-batch-example/logging:level:com.zzhua: debugfile:name: .logs/spring.log # 优先级比logging.path高

步骤4:建立employee表与employe_temp表

CREATE TABLE `employee` (`id` int NOT NULL AUTO_INCREMENT,`name` varchar(255) DEFAULT NULL,`age` int DEFAULT NULL,`sex` int DEFAULT NULL,PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;
CREATE TABLE `employee_temp` (`id` int NOT NULL AUTO_INCREMENT,`name` varchar(255) DEFAULT NULL,`age` int DEFAULT NULL,`sex` int DEFAULT NULL,PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;

步骤5:建立基本代码体系-domain-mapper-service-controller-mapper.xml

image-20221209150325367

domain

@Setter
@Getter
@ToString
public class Employee {private Long id;private String name;private int age;private int sex;
}

mapper.java

public interface EmployeeMapper {/*** 添加*/int save(Employee employee);
}

service接口

public interface IEmployeeService {/*** 保存*/void save(Employee employee);
}

service接口实现类

@Service
public class EmployeeServiceImpl implements IEmployeeService {@Autowiredprivate EmployeeMapper employeeMapper;@Overridepublic void save(Employee employee) {employeeMapper.save(employee);}
}

启动类

@SpringBootApplication
@EnableBatchProcessing
@MapperScan("com.langfeiyes.exp.mapper")
public class App {public static void main(String[] args) {SpringApplication.run(App.class, args);}
}

Mapper.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.langfeiyes.exp.mapper.EmployeeMapper"><resultMap id="BaseResultMap" type="com.langfeiyes.exp.domain.Employee"><result column="id" jdbcType="INTEGER" property="id" /><result column="name" jdbcType="VARCHAR" property="name" /><result column="age" jdbcType="VARCHAR" property="age" /><result column="sex" jdbcType="VARCHAR" property="sex" /></resultMap><insert id="save" keyColumn="id" useGeneratedKeys="true" keyProperty="id">insert into employee(id, name, age, sex) values(#{id},#{name},#{age},#{sex})</insert>
</mapper>

13.4 需求一

需求:先动态生成50w条员工数据,存放再employee.csv文件中

步骤1:定义:DataInitController

@RestController
public class DataInitController {@Autowiredprivate IEmployeeService employeeService;@GetMapping("/dataInit")public String dataInit() throws IOException {employeeService.dataInit();return "ok";}
}

步骤2:在IEmployeeService 添加dataInit 方法

public interface IEmployeeService {/*** 保存*/void save(Employee employee);/*** 初始化数据:生成50w数据*/void dataInit() throws IOException;
}

步骤3:在EmployeeServiceImpl 实现方法

@Service
public class EmployeeServiceImpl implements IEmployeeService {@Autowiredprivate EmployeeMapper employeeMapper;@Overridepublic void save(Employee employee) {employeeMapper.save(employee);}@Value("${job.data.path}")public String path;@Overridepublic void dataInit() throws IOException {File file = new File(path, "employee.csv");if (file.exists()) {file.delete();}file.createNewFile();FileOutputStream out = new FileOutputStream(file);String txt = "";Random ageR = new Random();Random boolR = new Random();// 给文件中生产50万条数据long beginTime = System.currentTimeMillis();System.out.println("开始时间:【 " + beginTime + " 】");for (int i = 1; i <= 500000; i++) {if(i == 500000){txt = i+",dafei_"+ i +"," + ageR.nextInt(100) + "," + (boolR.nextBoolean()?1:0);}else{txt = i+",dafei_"+ i +"," + ageR.nextInt(100) + "," + (boolR.nextBoolean()?1:0) +"\n";}out.write(txt.getBytes());out.flush();}out.close();System.out.println("总共耗时:【 "+ (System.currentTimeMillis() - beginTime) + " 】毫秒");}
}

步骤4:访问http://localhost:8080/dataInit 生成数据。

image-20221209153946838

image-20221209154012225

13.5 需求二

需求:启动作业异步读取employee.csv文件,将读到数据写入到employee_temp表,要求记录读与写消耗时间

步骤1:修改IEmployeeService 接口

public interface IEmployeeService {/*** 保存*/void save(Employee employee);/*** 初始化数据:生成50w数据*/void dataInit() throws IOException;/*** 清空数据*/void truncateAll();/*** 清空employee_temp数据*/void truncateTemp();
}

步骤2:修改EmployeeServiceImpl

@Override
public void truncateAll() {employeeMapper.truncateAll();
}@Override
public void truncateTemp() {employeeMapper.truncateTemp();
}

步骤3:修改IEmployeeMapper.java

public interface EmployeeMapper {/*** 添加*/int save(Employee employee);/*** 添加临时表* @param employee* @return*/int saveTemp(Employee employee);/*** 清空数据*/void truncateAll();/*** 清空临时表数据*/void truncateTemp();
}

步骤4:修改EmployeeMapper.xml

<insert id="saveTemp" keyColumn="id" useGeneratedKeys="true" keyProperty="id">insert into employee_temp(id, name, age, sex) values(#{id},#{name},#{age},#{sex})
</insert><delete id="truncateAll">truncate employee
</delete><delete id="truncateTemp">truncate employee_temp
</delete>

步骤5:在com.langfeiyes.exp.job.listener 包新建监听器,用于计算开始结束时间

import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.JobExecutionListener;public class CsvToDBJobListener implements JobExecutionListener {@Overridepublic void beforeJob(JobExecution jobExecution) {long begin = System.currentTimeMillis();jobExecution.getExecutionContext().putLong("begin", begin);System.err.println("----【CsvToDBJob开始时间:】---->"+begin);}@Overridepublic void afterJob(JobExecution jobExecution) {long begin = jobExecution.getExecutionContext().getLong("begin");long end = System.currentTimeMillis();System.err.println("----【CsvToDBJob结束时间:】---->"+end);System.err.println("----【CsvToDBJob总耗时:】---->"+(end - begin));}
}

步骤6:在com.langfeiyes.exp.job.config包定义CsvToDBJobConfig配置类

import com.langfeiyes.exp.domain.Employee;
import com.langfeiyes.exp.job.listener.CsvToDBJobListener;
import org.apache.ibatis.session.SqlSessionFactory;
import org.mybatis.spring.batch.MyBatisBatchItemWriter;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.PathResource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;import java.io.File;/*** 将数据从csv文件中读取,并写入数据库*/
@Configuration
public class CsvToDBJobConfig {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Autowiredprivate SqlSessionFactory sqlSessionFactory;@Value("${job.data.path}")private String path;// 定义itemReader -- 多线程异步读// 多线程读-读文件,使用FlatFileItemReader@Beanpublic FlatFileItemReader<Employee> cvsToDBItemReader(){FlatFileItemReader<Employee> reader = new FlatFileItemReaderBuilder<Employee>().name("employeeCSVItemReader").saveState(false) // 防止状态被覆盖(当使用多线程操作时,需要设置这个).resource(new PathResource(new File(path, "employee.csv").getAbsolutePath())).delimited().names("id", "name", "age", "sex").targetType(Employee.class).build();return reader;}//数据库写-使用mybatis提供批处理读入@Beanpublic MyBatisBatchItemWriter<Employee> cvsToDBItemWriter(){MyBatisBatchItemWriter<Employee> itemWriter = new MyBatisBatchItemWriter<>();// 需要指定sqlsession工厂itemWriter.setSqlSessionFactory(sqlSessionFactory);// 指定要操作sql语句,路径id为:EmployeeMapper.xml定义的sql语句iditemWriter.setStatementId("com.langfeiyes.exp.mapper.EmployeeMapper.saveTemp");return itemWriter;}@Beanpublic Step csvToDBStep(){return stepBuilderFactory.get("csvToDBStep")// 每个块10000个 共50个块.<Employee, Employee>chunk(10000)  .reader(cvsToDBItemReader()).writer(cvsToDBItemWriter())// 多线程读写.taskExecutor(new SimpleAsyncTaskExecutor())  .build();}//job监听器@Beanpublic CsvToDBJobListener csvToDBJobListener(){return new CsvToDBJobListener();}@Beanpublic Job csvToDBJob(){return jobBuilderFactory.get("csvToDB-step-job")// 开始步骤.start(csvToDBStep())// 保证可以多次执行.incrementer(new RunIdIncrementer())// 监听器.listener(csvToDBJobListener()).build();}
}

步骤7:在com.langfeiyes.exp.controller 添加JobController

import com.langfeiyes.exp.service.IEmployeeService;
import org.springframework.batch.core.*;
import org.springframework.batch.core.explore.JobExplorer;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;import java.util.Date;@RestController
public class JobController {@Autowiredprivate IEmployeeService employeeService;@Autowiredprivate JobLauncher jobLauncher;@Autowiredprivate JobExplorer jobExplorer;@Autowired@Qualifier("csvToDBJob")private Job csvToDBJob;@GetMapping("/csvToDB")public String csvToDB() throws Exception {employeeService.truncateTemp(); //清空数据运行多次执行//需要多次执行,run.id 必须重写之前,再重构一个新的参数对象JobParameters jobParameters = new JobParametersBuilder(new JobParameters(), jobExplorer).addLong("time", new Date().getTime()).getNextJobParameters(csvToDBJob).toJobParameters();JobExecution run = jobLauncher.run(csvToDBJob, jobParameters);return run.getId().toString();}
}

步骤8:访问测试:http://localhost:8080/csvToDB

----CsvToDBJob开始时间:】---->1670575356773
----CsvToDBJob结束时间:】---->1670575510967
----CsvToDBJob总耗时:】---->154194

(注意,测试接口前,取消掉数据库中employee_temp表的id主键,然后调用接口,再查看数据库的数据,可以看到id的顺序是有点乱的-不是递增的,总共有500000条数据)

13.6 需求三

image-20250419225902324

需求:使用分区的方式将employee_temp表的数据读取并写入到employee表

步骤1:在com.langfeiyes.exp.job.config 包添加DBToDBJobConfig, 配置从数据库到数据库的作业

import com.langfeiyes.ex.domain.Employee;
import com.langfeiyes.ex.job.partitioner.DBToDBPartitioner;
import org.apache.ibatis.session.SqlSessionFactory;
import org.mybatis.spring.batch.MyBatisBatchItemWriter;
import org.mybatis.spring.batch.MyBatisPagingItemReader;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.partition.PartitionHandler;
import org.springframework.batch.core.partition.support.TaskExecutorPartitionHandler;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.task.SimpleAsyncTaskExecutor;import java.util.HashMap;
import java.util.Map;/*** 配置分区作业* 将数据从employee_temp中读取,并写入employe 表*/
@Configuration
public class DBToDBJobConfig {@Autowiredprivate JobBuilderFactory jobBuilderFactory;@Autowiredprivate StepBuilderFactory stepBuilderFactory;@Autowiredprivate SqlSessionFactory sqlSessionFactory;//从步骤读数据--reader//存在问题: 有50从步骤, 50w条数据, 怎么分配//从步骤1: select * from employee_temp where id between 1 and 10000 limit offset, pageSize//从步骤2: select * from employee_temp where id between 10001 and 20000 limit offset, pageSize//从步骤50: select * from employee_temp where id between 490001 and 500000 limit offset, pageSize//reader组件定义必须指定操作数据: from  to  pageSize@Bean@StepScopepublic MyBatisPagingItemReader<Employee> dbToDBItemReader(@Value("#{stepExecutionContext[from]}")Integer from,@Value("#{stepExecutionContext[to]}")Integer to,@Value("#{stepExecutionContext[range]}")Integer range){System.out.println("----------MyBatisPagingItemReader开始-----from: " + from + "-----to:" + to + "-----每片数量:" + range);MyBatisPagingItemReader<Employee> itemReader = new MyBatisPagingItemReader<>();itemReader.setSqlSessionFactory(sqlSessionFactory);itemReader.setPageSize(1000);  //约定每页显示1000条itemReader.setQueryId("com.langfeiyes.ex.mapper.EmployeeMapper.selectTempForList");//key: sql中条件参数, value: 条件值Map<String, Object> map = new HashMap<>();map.put("from", from);map.put("to", to);itemReader.setParameterValues(map);//from  // to  在 分区器中配置, 当前可以重上下文中获取return itemReader;}//从步骤写数据--writer@Beanpublic MyBatisBatchItemWriter<Employee> dbToDBItemWriter(){MyBatisBatchItemWriter<Employee> itemWriter = new MyBatisBatchItemWriter();//可以构建sqlsession类似jdbc connettion--可以执行sql语句类itemWriter.setSqlSessionFactory(sqlSessionFactory);//指定要执行save:Employee_temp操作sql语句,从EmployeeMapper.xml找id为saveTemp sql语句itemWriter.setStatementId("com.langfeiyes.ex.mapper.EmployeeMapper.save");return itemWriter;}//从步骤@Beanpublic Step workStep(){return stepBuilderFactory.get("workStep").<Employee,Employee>chunk(1000).reader(dbToDBItemReader(null, null,null)).writer(dbToDBItemWriter()).build();}//分区器@Beanpublic DBToDBPartitioner dbToDBPartitioner(){return new DBToDBPartitioner();}//分区处理器@Beanpublic PartitionHandler dbToDBPartitionHandler(){TaskExecutorPartitionHandler handler = new TaskExecutorPartitionHandler();handler.setGridSize(50);handler.setTaskExecutor(new SimpleAsyncTaskExecutor());handler.setStep(workStep());try {handler.afterPropertiesSet();} catch (Exception e) {e.printStackTrace();}return handler;}//主步骤@Beanpublic Step masterStep(){return stepBuilderFactory.get("masterStep").partitioner(workStep().getName(), dbToDBPartitioner()).partitionHandler(dbToDBPartitionHandler()).build();}//作业@Beanpublic Job dbToDBJob(){return jobBuilderFactory.get("dbToDB-step-job").start(masterStep()).incrementer(new RunIdIncrementer()).build();}}

步骤2:修改EmployeeMapper.xml

<select id="selectTempForList" resultMap="BaseResultMap">select * from employee_temp where id between #{from} and #{to} limit #{_pagesize} OFFSET #{_skiprows}
</select>

步骤3:在com.langfeiyes.exp.job.partitioner 创建DBToDBPartitioner, 用于分区

import org.springframework.batch.core.partition.support.Partitioner;
import org.springframework.batch.item.ExecutionContext;import java.util.HashMap;
import java.util.Map;//db2db 分区器设置, 将从步骤需要的from, to range 3个设置到从步骤中上下文中
public class DBToDBPartitioner  implements Partitioner {@Overridepublic Map<String, ExecutionContext> partition(int gridSize) {String text = "DBToDBPartitioner第%s分区开始:%s---结束:%s---数据量:%s";Map<String, ExecutionContext> map = new HashMap<>();int from = 1;int to = 10000;int range = 10000;for (int i = 0; i < gridSize; i++) {System.out.println(String.format(text, i, from, to, (to - from + 1)));ExecutionContext ex = new ExecutionContext();ex.putInt("from", from);ex.putInt("to", to);ex.putInt("range", range);to += range;from += range;map.put("partitioner_" + i, ex);}return map;}
}

步骤4:修改JobController 类

@GetMapping("/dbToDB")
public String dbToDB() throws Exception {employeeService.truncateAll();JobParameters jobParameters = new JobParametersBuilder(new JobParameters(),jobExplorer).addLong("time", new Date().getTime()).getNextJobParameters(dbToDBJob).toJobParameters();JobExecution run = jobLauncher.run(dbToDBJob, jobParameters);return run.getId().toString();
}

步骤8:访问:http://localhost:8080/dbToDB

(在调用接口前,确保employee_temp表中的数据是按照id主键自增往上递增的,这样可以使用这里的sql语句)

----DBToDBPartitioner---0分区-----开始:1---结束:10000---数据量:10000--------------
----DBToDBPartitioner---1分区-----开始:10001---结束:20000---数据量:10000--------------
----DBToDBPartitioner---2分区-----开始:20001---结束:30000---数据量:10000--------------
----DBToDBPartitioner---3分区-----开始:30001---结束:40000---数据量:10000--------------
----DBToDBPartitioner---4分区-----开始:40001---结束:50000---数据量:10000--------------
----DBToDBPartitioner---5分区-----开始:50001---结束:60000---数据量:10000--------------
----DBToDBPartitioner---6分区-----开始:60001---结束:70000---数据量:10000--------------
----DBToDBPartitioner---7分区-----开始:70001---结束:80000---数据量:10000--------------
----DBToDBPartitioner---8分区-----开始:80001---结束:90000---数据量:10000--------------
----DBToDBPartitioner---9分区-----开始:90001---结束:100000---数据量:10000--------------
----DBToDBPartitioner---10分区-----开始:100001---结束:110000---数据量:10000--------------
----DBToDBPartitioner---11分区-----开始:110001---结束:120000---数据量:10000--------------
----DBToDBPartitioner---12分区-----开始:120001---结束:130000---数据量:10000--------------
----DBToDBPartitioner---13分区-----开始:130001---结束:140000---数据量:10000--------------
----DBToDBPartitioner---14分区-----开始:140001---结束:150000---数据量:10000--------------
----DBToDBPartitioner---15分区-----开始:150001---结束:160000---数据量:10000--------------
----DBToDBPartitioner---16分区-----开始:160001---结束:170000---数据量:10000--------------
----DBToDBPartitioner---17分区-----开始:170001---结束:180000---数据量:10000--------------
----DBToDBPartitioner---18分区-----开始:180001---结束:190000---数据量:10000--------------
----DBToDBPartitioner---19分区-----开始:190001---结束:200000---数据量:10000--------------
----DBToDBPartitioner---20分区-----开始:200001---结束:210000---数据量:10000--------------
----DBToDBPartitioner---21分区-----开始:210001---结束:220000---数据量:10000--------------
----DBToDBPartitioner---22分区-----开始:220001---结束:230000---数据量:10000--------------
----DBToDBPartitioner---23分区-----开始:230001---结束:240000---数据量:10000--------------
----DBToDBPartitioner---24分区-----开始:240001---结束:250000---数据量:10000--------------
----DBToDBPartitioner---25分区-----开始:250001---结束:260000---数据量:10000--------------
----DBToDBPartitioner---26分区-----开始:260001---结束:270000---数据量:10000--------------
----DBToDBPartitioner---27分区-----开始:270001---结束:280000---数据量:10000--------------
----DBToDBPartitioner---28分区-----开始:280001---结束:290000---数据量:10000--------------
----DBToDBPartitioner---29分区-----开始:290001---结束:300000---数据量:10000--------------
----DBToDBPartitioner---30分区-----开始:300001---结束:310000---数据量:10000--------------
----DBToDBPartitioner---31分区-----开始:310001---结束:320000---数据量:10000--------------
----DBToDBPartitioner---32分区-----开始:320001---结束:330000---数据量:10000--------------
----DBToDBPartitioner---33分区-----开始:330001---结束:340000---数据量:10000--------------
----DBToDBPartitioner---34分区-----开始:340001---结束:350000---数据量:10000--------------
----DBToDBPartitioner---35分区-----开始:350001---结束:360000---数据量:10000--------------
----DBToDBPartitioner---36分区-----开始:360001---结束:370000---数据量:10000--------------
----DBToDBPartitioner---37分区-----开始:370001---结束:380000---数据量:10000--------------
----DBToDBPartitioner---38分区-----开始:380001---结束:390000---数据量:10000--------------
----DBToDBPartitioner---39分区-----开始:390001---结束:400000---数据量:10000--------------
----DBToDBPartitioner---40分区-----开始:400001---结束:410000---数据量:10000--------------
----DBToDBPartitioner---41分区-----开始:410001---结束:420000---数据量:10000--------------
----DBToDBPartitioner---42分区-----开始:420001---结束:430000---数据量:10000--------------
----DBToDBPartitioner---43分区-----开始:430001---结束:440000---数据量:10000--------------
----DBToDBPartitioner---44分区-----开始:440001---结束:450000---数据量:10000--------------
----DBToDBPartitioner---45分区-----开始:450001---结束:460000---数据量:10000--------------
----DBToDBPartitioner---46分区-----开始:460001---结束:470000---数据量:10000--------------
----DBToDBPartitioner---47分区-----开始:470001---结束:480000---数据量:10000--------------
----DBToDBPartitioner---48分区-----开始:480001---结束:490000---数据量:10000--------------
----DBToDBPartitioner---49分区-----开始:490001---结束:500000---数据量:10000--------------
----------MyBatisPagingItemReader开始-----from: 250001  -----to:260000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 290001  -----to:300000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 80001  -----to:90000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 410001  -----to:420000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 360001  -----to:370000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 230001  -----to:240000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 40001  -----to:50000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 340001  -----to:350000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 450001  -----to:460000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 110001  -----to:120000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 350001  -----to:360000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 50001  -----to:60000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 430001  -----to:440000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 20001  -----to:30000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 120001  -----to:130000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 190001  -----to:200000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 100001  -----to:110000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 470001  -----to:480000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 60001  -----to:70000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 200001  -----to:210000  -----每片数量:10000

到这,案例就全部结束了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/79617.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp的通用页面及组件基本封装

1.基本布局页面 适用于自定义Navbar头部 <template><view :style"{ background : param.bgColor , height: 100% }"><block v-if"param.noHead"><slot name"head"></slot></block><block v-if"!p…

基于MTF的1D-2D-CNN-GRU-Attention时序图像多模态融合的故障识别,适合研究学习(Matlab完整源码和数据),附模型研究报告

基于MTF的1D-2D-CNN-GRU-Attention时序图像多模态融合的故障识别&#xff0c;适合研究学习&#xff08;Matlab完整源码和数据&#xff09;&#xff0c;附模型研究报告 目录 基于MTF的1D-2D-CNN-GRU-Attention时序图像多模态融合的故障识别&#xff0c;适合研究学习&#xff08;…

HTTP/1.1 队头堵塞问题

文章目录 一、队头堵塞1、非管线化2、管线化 二、如何解决&#xff1f; 一、队头堵塞 1、非管线化 如图&#xff0c;http 请求必须等到上一个请求响应后才能发送&#xff0c;后面的以此类推&#xff0c;由此可以看出&#xff0c;在一个 tcp 通道中&#xff0c;如果某个 http 请…

施磊老师基于muduo网络库的集群聊天服务器(二)

文章目录 Cmake简单介绍Cmake与MakefileCmake配置CmakeLists.txt 编写完整cmake例子文件夹杂乱问题多级目录Cmakevscode 极其推荐 的 cmake方式 Mysql环境与编程mysql简单使用User表Friend表AllGroup表GroupUser表OfflineMessage表 集群聊天项目工程目录创建网络模块代码Chatse…

4.18---缓存相关问题(操作原子性,击穿,穿透,雪崩,redis优势)

为什么要用redis做一层缓存&#xff0c;相比直接查mysql有什么优势&#xff1f; 首先介绍Mysql自带缓存机制的问题&#xff1a; MySQL 的缓存机制存在一些限制和问题,它自身带的缓存功能Query Cache只能缓存完全相同的查询语句&#xff0c;对于稍有不同的查询语句&#xff0c…

健康养生指南

在快节奏的现代生活中&#xff0c;健康养生成为人们关注的焦点。它不仅关乎身体的强健&#xff0c;更是提升生活质量、预防疾病的关键。掌握科学的养生方法&#xff0c;能让我们在岁月流转中始终保持活力。 饮食是健康养生的基础。遵循 “均衡膳食” 原则&#xff0c;每日饮食需…

#去除知乎中“盐选”付费故事

添加油猴脚本&#xff0c;去除知乎中“盐选”付费故事 // UserScript // name 盐选内容隐藏脚本 // namespace http://tampermonkey.net/ // version 0.2 // description 自动隐藏含有“盐选专栏”或“盐选”文字的回答卡片 // author YourName // mat…

如何防止接口被刷

目录 &#x1f6e1;️ 一、常见的防刷策略分类 &#x1f527; 二、技术实现细节 ✅ 1. 基于 IP 限流 ✅ 2. 给接口加验证码 ✅ 3. 使用 Token 限制接口访问权限 ✅ 4. 给接口加冷却时间&#xff08;验证码类经典&#xff09; ✅ 5. 使用滑动窗口限流算法&#xff08;更精…

github 项目迁移到 gitee

1. 查看远程仓库地址 git remote -v 2. 修改远程仓库地址 确保 origin 指向你的 Gitee 仓库&#xff0c;如果不是&#xff0c;修改远程地址。 git remote set-url origin https://gitee.com/***/project.git 3. 查看本地分支 git branch 4. 推送所有本地分支 git p…

探索大语言模型(LLM):目标、原理、挑战与解决方案

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言语言模型的目标语言模型的数学表示语言模型面临的挑战解决参数量巨大的方法1. 马尔可夫假设2. 神经网络语言模型3.自监督学习4. 分布式表示 脑图总结 前言 在自…

Kubernetes》》k8s》》Namespace

Namespace 概述 Namespace&#xff08;命名空间&#xff09; 是 Kubernetes 中用于逻辑隔离集群资源的机制&#xff0c;可将同一集群划分为多个虚拟环境&#xff0c;适用于多团队、多项目或多环境&#xff08;如开发、测试、生产&#xff09;的场景。 核心作用&#xff1a; 资…

FFUF指南

ffuf 的核心功能&#xff1a; 目录/文件发现&#xff1a; 通过暴力破解&#xff08;使用字典&#xff09;探测目标网站的隐藏目录或文件&#xff0c;例如&#xff1a; ffuf -w /path/to/wordlist.txt -u http://target.com/FUZZ 子域名枚举&#xff1a; 通过模糊测试发现目标…

Qt通过ODBC和QPSQL两种方式连接PostgreSQL或PolarDB PostgreSQL版

一、概述 以下主要在Windows下验证连接PolarDB PostgreSQL版&#xff08;阿里云兼容 PostgreSQL的PolarDB版本&#xff09;。Linux下类似&#xff0c;ODBC方式则需要配置odbcinst.ini和odbc.ini。 二、代码 以下为完整代码&#xff0c;包含两种方式连接数据库&#xff0c;并…

为什么浮点数会搞出Infinity和NAN两种类型?浮点数的底层原理?IEEE 754标准揭秘?

目录 什么是NAN? 不同编程语言的NaN 为什么浮点数会搞出Infinity和NAN两种类型? 浮点数 小数点位置浮动的原因 浮点数和整数 浮点数指令 精确性 浮点数的类型 为什么叫浮点数? 小数点位置浮动的原因 IEEE 754起源于intel公司 IEEE 754标准 编程语言的浮点数都…

Node.js Session 原理简单介绍 + 示例代码

目录 ✅ Session 原理简要说明 &#x1f9e9; 示例项目 - 使用 Node.js Express 实现简单 Session 登录 &#x1f4c1; 文件结构 &#x1f539; server.js (JavaScript) &#x1f538; index.html (HTML) ▶️ 程序运行步骤 ✅ 程序运行效果 &#x1f3af; 总结 在 We…

实战交易策略 篇十六:猎豹阿杜打板交易策略

文章目录 系列文章狙击涨停板的十大要诀炒股大成者,必具“三商”系列文章 实战交易策略 篇一:奥利弗瓦莱士短线交易策略 实战交易策略 篇二:杰西利弗莫尔股票大作手操盘术策略 实战交易策略 篇三:333交易策略 实战交易策略 篇四:价值投资交易策略 实战交易策略 篇五:底部…

Opentelemetry 项目解读

Opentelemetry 解读 1. 什么是 Opentelmetry Ot 统一了可观测的三个重要维度&#xff1a;分别是 Trace&#xff0c;Log&#xff0c;Metrics。 在没有 ot 之前&#xff0c;不同维度的可观测组件都是不同的&#xff1a; 在 Trace 领域&#xff1a;skywalking 一直很受欢迎&am…

与终端同居日记:Linux指令の进阶撩拨手册

前情提要&#xff1a; 当你和终端的关系从「早安打卡」进阶到「深夜代码同居」&#xff0c;那些曾经高冷的指令开始展露致命の反差萌—— man 是那个永远在线的钢铁直男说明书&#xff0c;只会说&#xff1a;"想懂我&#xff1f;自己看文档&#xff01;"&#xff08…

Java 开发玩转 MCP:从 Claude 自动化到 Spring AI Alibaba 生态整合

摘要 本文以原理与示例结合的形式讲解 Java 开发者如何基于 Spring AI Alibaba 框架玩转 MCP&#xff0c;主要包含以下内容。 1. 一些 MCP 基础与快速体验&#xff08;熟悉的读者可以跳过此部分&#xff09; 2. 如何将自己开发的 Spring 应用发布为 MCP Server&#xff0c;验…

【面试向】欠拟合和过拟合、正则化(Regularization)

训练集、验证集和测试集泛化误差过拟合&#xff08;Overfitting&#xff09;和 欠拟合&#xff08;Underfitting&#xff09;如何区分过拟合和欠拟合&#xff1f;欠拟合 —— 在训练集和验证集上都表现很差过拟合 —— 在训练集上表现很好&#xff0c;但在验证集或测试集上表现…