Ollama+open-webui搭建私有本地大模型详细教程

Ollama+open-webui搭建私有本地大模型详细教程

1. 什么是 Ollama?

1.1. Ollama 简介

​ Ollama 是一个轻量级的 AI 模型运行时,专注于简化 AI 模型的部署和使用。它支持多种预训练模型(如 Llama、Vicuna、Dolly 等),并且可以在本地运行,无需复杂的基础设施。Ollama 的设计理念是让 AI 模型的使用变得像运行普通程序一样简单,同时确保数据和隐私的安全性。

​ Ollama 正在不断优化和扩展,未来会支持更多模型类型、更高效的性能优化,以及更友好的用户界面。Ollama的目标是成为 AI 模型部署领域的标准工具,让更多人能够轻松使用 AI 技术。

1.2. 核心特点

  • 轻量化:Ollama 的资源占用非常低,适合在本地或小型服务器上运行,即使硬件配置有限也能流畅使用。

  • 多模型支持:支持多种主流的预训练模型,用户可以根据需求选择适合的模型。

  • 本地运行:所有模型和数据完全在本地运行,无需上传到云端,保护用户隐私。

  • 易于部署:安装和启动流程简单,支持 Docker 和二进制文件部署,适合不同环境。

  • 交互式使用:提供命令行工具,用户可以通过简单的命令与模型交互,快速获取结果。

  • 隐私保护:模型和数据完全在本地运行,无需上传到云端。

1.3. 应用场景

  • 个人开发者:快速测试和实验 AI 模型,无需复杂的环境配置。
  • 企业用户:在本地运行 AI 模型,确保数据安全,同时满足业务需求。

2. Ollama安装与部署

ollama官方网站:https://ollama.com

服务器资源准备(GPU服务器)

以实验环境,操作环境为 ubuntu20.04,显卡RTX 4090,配置16C/128G

2.1. 使用官方提供的安装方式(推荐)

官方推荐方式

(py38) root@wangt:~# mkdir ollama
(py38) root@wangt:~# cd ollama/
(py38) root@wangt:~# curl -fsSL https://ollama.com/install.sh | sh
# 等待安装结束即可,非常简单(执行过程中下载安装包比较耗时)# 更改服务默认端口(可选)
(py38) root@wangt:~/ollama# vim /etc/systemd/system/ollama.service
[Unit]
Description=Ollama Service
After=network-online.target[Service]
ExecStart=/usr/local/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=/usr/local/cuda-11.8/bin:/root/miniconda3/envs/py38/bin:/root/miniconda3/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin"
Environment="OLLAMA_HOST=0.0.0.0:8890"[Install]
WantedBy=default.target

Environment=“OLLAMA_HOST=0.0.0.0:8890”

可以自定义端口,和访问控制,0.0.0.0表示任何网段和环境均可进行访问,8890表示用8890端口启动,不加则默认为11434

(py38) root@wangt:~/ollama# systemctl daemon-reload
(py38) root@wangt:~/ollama# systemctl restart ollama
(py38) root@wangt:~/ollama# netstat -tnlpu|grep 8890
tcp6       0      0 :::8890                 :::*                    LISTEN      3073/ollama   

2.2. 手动安装详细介绍(备选项)

官方提供的安装方式,仅适合网络下载速度较快的情况,否则安装容易失败,因为下载包速度慢,很可能下载失败导致脚本运行异常,如果上面安装总是不成功,以下提供下载包手动安装的方式

# 下载安装包可以用梯子下载,传到服务器(windows下载后上传服务器)
(py38) root@wangt:~/ollama# wget https://gh-proxy.com/github.com/ollama/ollama/releases/latest/download/ollama-linux-amd64.tgz# 拉取脚本但不执行
(py38) root@wangt:~# curl -fsSL https://ollama.com/install.sh > install.sh
(py38) root@wangt:~/ollama# chmod +x install.sh
(py38) root@wangt:~/ollama# vim install.sh

需要将脚本中原本下载安装包的相关内容注释,并把tar命令修改到正确位置

如果担心脚本改错,可以直接复制下面已经改好的脚本内容

#!/bin/sh
# This script installs Ollama on Linux.
# It detects the current operating system architecture and installs the appropriate version of Ollama.set -eured="$( (/usr/bin/tput bold || :; /usr/bin/tput setaf 1 || :) 2>&-)"
plain="$( (/usr/bin/tput sgr0 || :) 2>&-)"status() { echo ">>> $*" >&2; }
error() { echo "${red}ERROR:${plain} $*"; exit 1; }
warning() { echo "${red}WARNING:${plain} $*"; }TEMP_DIR=$(mktemp -d)
cleanup() { rm -rf $TEMP_DIR; }
trap cleanup EXITavailable() { command -v $1 >/dev/null; }
require() {local MISSING=''for TOOL in $*; doif ! available $TOOL; thenMISSING="$MISSING $TOOL"fidoneecho $MISSING
}[ "$(uname -s)" = "Linux" ] || error 'This script is intended to run on Linux only.'ARCH=$(uname -m)
case "$ARCH" inx86_64) ARCH="amd64" ;;aarch64|arm64) ARCH="arm64" ;;*) error "Unsupported architecture: $ARCH" ;;
esacIS_WSL2=falseKERN=$(uname -r)
case "$KERN" in*icrosoft*WSL2 | *icrosoft*wsl2) IS_WSL2=true;;*icrosoft) error "Microsoft WSL1 is not currently supported. Please use WSL2 with 'wsl --set-version <distro> 2'" ;;*) ;;
esacVER_PARAM="${OLLAMA_VERSION:+?version=$OLLAMA_VERSION}"SUDO=
if [ "$(id -u)" -ne 0 ]; then# Running as root, no need for sudoif ! available sudo; thenerror "This script requires superuser permissions. Please re-run as root."fiSUDO="sudo"
fiNEEDS=$(require curl awk grep sed tee xargs)
if [ -n "$NEEDS" ]; thenstatus "ERROR: The following tools are required but missing:"for NEED in $NEEDS; doecho "  - $NEED"doneexit 1
fifor BINDIR in /usr/local/bin /usr/bin /bin; doecho $PATH | grep -q $BINDIR && break || continue
done
OLLAMA_INSTALL_DIR=$(dirname ${BINDIR})if [ -d "$OLLAMA_INSTALL_DIR/lib/ollama" ] ; thenstatus "Cleaning up old version at $OLLAMA_INSTALL_DIR/lib/ollama"$SUDO rm -rf "$OLLAMA_INSTALL_DIR/lib/ollama"
fi
status "Installing ollama to $OLLAMA_INSTALL_DIR"
$SUDO install -o0 -g0 -m755 -d $BINDIR
$SUDO install -o0 -g0 -m755 -d "$OLLAMA_INSTALL_DIR/lib/ollama"
status "Downloading Linux ${ARCH} bundle"
#curl --fail --show-error --location --progress-bar \
#    "https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" | \
tar -xzf /root/ollama/ollama-linux-amd64.tgz -C "$OLLAMA_INSTALL_DIR"if [ "$OLLAMA_INSTALL_DIR/bin/ollama" != "$BINDIR/ollama" ] ; thenstatus "Making ollama accessible in the PATH in $BINDIR"$SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"
fi# Check for NVIDIA JetPack systems with additional downloads
if [ -f /etc/nv_tegra_release ] ; thenif grep R36 /etc/nv_tegra_release > /dev/null ; thenstatus "Downloading JetPack 6 components"#curl --fail --show-error --location --progress-bar \#    "https://ollama.com/download/ollama-linux-${ARCH}-jetpack6.tgz${VER_PARAM}" | \tar -xzf /root/ollama/ollama-linux-amd64.tgz -C "$OLLAMA_INSTALL_DIR"elif grep R35 /etc/nv_tegra_release > /dev/null ; thenstatus "Downloading JetPack 5 components"#curl --fail --show-error --location --progress-bar \#    "https://ollama.com/download/ollama-linux-${ARCH}-jetpack5.tgz${VER_PARAM}" | \tar -xzf /root/ollama/ollama-linux-amd64.tgz -C "$OLLAMA_INSTALL_DIR"elsewarning "Unsupported JetPack version detected.  GPU may not be supported"fi
fiinstall_success() {status 'The Ollama API is now available at 127.0.0.1:11434.'status 'Install complete. Run "ollama" from the command line.'
}
trap install_success EXIT# Everything from this point onwards is optional.configure_systemd() {if ! id ollama >/dev/null 2>&1; thenstatus "Creating ollama user..."$SUDO useradd -r -s /bin/false -U -m -d /usr/share/ollama ollamafiif getent group render >/dev/null 2>&1; thenstatus "Adding ollama user to render group..."$SUDO usermod -a -G render ollamafiif getent group video >/dev/null 2>&1; thenstatus "Adding ollama user to video group..."$SUDO usermod -a -G video ollamafistatus "Adding current user to ollama group..."$SUDO usermod -a -G ollama $(whoami)status "Creating ollama systemd service..."cat <<EOF | $SUDO tee /etc/systemd/system/ollama.service >/dev/null
[Unit]
Description=Ollama Service
After=network-online.target[Service]
ExecStart=$BINDIR/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=$PATH"[Install]
WantedBy=default.target
EOFSYSTEMCTL_RUNNING="$(systemctl is-system-running || true)"case $SYSTEMCTL_RUNNING inrunning|degraded)status "Enabling and starting ollama service..."$SUDO systemctl daemon-reload$SUDO systemctl enable ollamastart_service() { $SUDO systemctl restart ollama; }trap start_service EXIT;;*)warning "systemd is not running"if [ "$IS_WSL2" = true ]; thenwarning "see https://learn.microsoft.com/en-us/windows/wsl/systemd#how-to-enable-systemd to enable it"fi;;esac
}if available systemctl; thenconfigure_systemd
fi# WSL2 only supports GPUs via nvidia passthrough
# so check for nvidia-smi to determine if GPU is available
if [ "$IS_WSL2" = true ]; thenif available nvidia-smi && [ -n "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; thenstatus "Nvidia GPU detected."fiinstall_successexit 0
fi# Don't attempt to install drivers on Jetson systems
if [ -f /etc/nv_tegra_release ] ; thenstatus "NVIDIA JetPack ready."install_successexit 0
fi# Install GPU dependencies on Linux
if ! available lspci && ! available lshw; thenwarning "Unable to detect NVIDIA/AMD GPU. Install lspci or lshw to automatically detect and install GPU dependencies."exit 0
ficheck_gpu() {# Look for devices based on vendor ID for NVIDIA and AMDcase $1 inlspci)case $2 innvidia) available lspci && lspci -d '10de:' | grep -q 'NVIDIA' || return 1 ;;amdgpu) available lspci && lspci -d '1002:' | grep -q 'AMD' || return 1 ;;esac ;;lshw)case $2 innvidia) available lshw && $SUDO lshw -c display -numeric -disable network | grep -q 'vendor: .* \[10DE\]' || return 1 ;;amdgpu) available lshw && $SUDO lshw -c display -numeric -disable network | grep -q 'vendor: .* \[1002\]' || return 1 ;;esac ;;nvidia-smi) available nvidia-smi || return 1 ;;esac
}if check_gpu nvidia-smi; thenstatus "NVIDIA GPU installed."exit 0
fiif ! check_gpu lspci nvidia && ! check_gpu lshw nvidia && ! check_gpu lspci amdgpu && ! check_gpu lshw amdgpu; theninstall_successwarning "No NVIDIA/AMD GPU detected. Ollama will run in CPU-only mode."exit 0
fiif check_gpu lspci amdgpu || check_gpu lshw amdgpu; thenstatus "Downloading Linux ROCm ${ARCH} bundle"#curl --fail --show-error --location --progress-bar \#    "https://ollama.com/download/ollama-linux-${ARCH}-rocm.tgz${VER_PARAM}" | \tar -xzf /root/ollama/ollama-linux-amd64.tgz -C "$OLLAMA_INSTALL_DIR"install_successstatus "AMD GPU ready."exit 0
fiCUDA_REPO_ERR_MSG="NVIDIA GPU detected, but your OS and Architecture are not supported by NVIDIA.  Please install the CUDA driver manually https://docs.nvidia.com/cuda/cuda-installation-guide-linux/"
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-7-centos-7
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-8-rocky-8
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-9-rocky-9
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#fedora
install_cuda_driver_yum() {status 'Installing NVIDIA repository...'case $PACKAGE_MANAGER inyum)$SUDO $PACKAGE_MANAGER -y install yum-utilsif curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repo" >/dev/null ; then$SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repoelseerror $CUDA_REPO_ERR_MSGfi;;dnf)if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repo" >/dev/null ; then$SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repoelseerror $CUDA_REPO_ERR_MSGfi;;esaccase $1 inrhel)status 'Installing EPEL repository...'# EPEL is required for third-party dependencies such as dkms and libvdpau$SUDO $PACKAGE_MANAGER -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-$2.noarch.rpm || true;;esacstatus 'Installing CUDA driver...'if [ "$1" = 'centos' ] || [ "$1$2" = 'rhel7' ]; then$SUDO $PACKAGE_MANAGER -y install nvidia-driver-latest-dkmsfi$SUDO $PACKAGE_MANAGER -y install cuda-drivers
}# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#ubuntu
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#debian
install_cuda_driver_apt() {status 'Installing NVIDIA repository...'if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-keyring_1.1-1_all.deb" >/dev/null ; thencurl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-keyring_1.1-1_all.debelseerror $CUDA_REPO_ERR_MSGficase $1 indebian)status 'Enabling contrib sources...'$SUDO sed 's/main/contrib/' < /etc/apt/sources.list | $SUDO tee /etc/apt/sources.list.d/contrib.list > /dev/nullif [ -f "/etc/apt/sources.list.d/debian.sources" ]; then$SUDO sed 's/main/contrib/' < /etc/apt/sources.list.d/debian.sources | $SUDO tee /etc/apt/sources.list.d/contrib.sources > /dev/nullfi;;esacstatus 'Installing CUDA driver...'$SUDO dpkg -i $TEMP_DIR/cuda-keyring.deb$SUDO apt-get update[ -n "$SUDO" ] && SUDO_E="$SUDO -E" || SUDO_E=DEBIAN_FRONTEND=noninteractive $SUDO_E apt-get -y install cuda-drivers -q
}if [ ! -f "/etc/os-release" ]; thenerror "Unknown distribution. Skipping CUDA installation."
fi. /etc/os-releaseOS_NAME=$ID
OS_VERSION=$VERSION_IDPACKAGE_MANAGER=
for PACKAGE_MANAGER in dnf yum apt-get; doif available $PACKAGE_MANAGER; thenbreakfi
doneif [ -z "$PACKAGE_MANAGER" ]; thenerror "Unknown package manager. Skipping CUDA installation."
fiif ! check_gpu nvidia-smi || [ -z "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; thencase $OS_NAME incentos|rhel) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -d '.' -f 1) ;;rocky) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -c1) ;;fedora) [ $OS_VERSION -lt '39' ] && install_cuda_driver_yum $OS_NAME $OS_VERSION || install_cuda_driver_yum $OS_NAME '39';;amzn) install_cuda_driver_yum 'fedora' '37' ;;debian) install_cuda_driver_apt $OS_NAME $OS_VERSION ;;ubuntu) install_cuda_driver_apt $OS_NAME $(echo $OS_VERSION | sed 's/\.//') ;;*) exit ;;esac
fiif ! lsmod | grep -q nvidia || ! lsmod | grep -q nvidia_uvm; thenKERNEL_RELEASE="$(uname -r)"case $OS_NAME inrocky) $SUDO $PACKAGE_MANAGER -y install kernel-devel kernel-headers ;;centos|rhel|amzn) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE kernel-headers-$KERNEL_RELEASE ;;fedora) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE ;;debian|ubuntu) $SUDO apt-get -y install linux-headers-$KERNEL_RELEASE ;;*) exit ;;esacNVIDIA_CUDA_VERSION=$($SUDO dkms status | awk -F: '/added/ { print $1 }')if [ -n "$NVIDIA_CUDA_VERSION" ]; then$SUDO dkms install $NVIDIA_CUDA_VERSIONfiif lsmod | grep -q nouveau; thenstatus 'Reboot to complete NVIDIA CUDA driver install.'exit 0fi$SUDO modprobe nvidia$SUDO modprobe nvidia_uvm
fi# make sure the NVIDIA modules are loaded on boot with nvidia-persistenced
if available nvidia-persistenced; then$SUDO touch /etc/modules-load.d/nvidia.confMODULES="nvidia nvidia-uvm"for MODULE in $MODULES; doif ! grep -qxF "$MODULE" /etc/modules-load.d/nvidia.conf; thenecho "$MODULE" | $SUDO tee -a /etc/modules-load.d/nvidia.conf > /dev/nullfidone
fistatus "NVIDIA GPU ready."
install_success

保存并执行安装脚本

(py38) root@wangt:~/ollama# bash install.sh
# 等待安装结束(py38) root@wangt:~/ollama# vim /etc/systemd/system/ollama.service
[Unit]
Description=Ollama Service
After=network-online.target[Service]
ExecStart=/usr/local/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=/usr/local/cuda-11.8/bin:/root/miniconda3/envs/py38/bin:/root/miniconda3/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin"
Environment="OLLAMA_HOST=0.0.0.0:8890"[Install]
WantedBy=default.target(py38) root@wangt:~/ollama# systemctl daemon-reload
(py38) root@wangt:~/ollama# systemctl restart ollama
(py38) root@wangt:~/ollama# netstat -tnlpu|grep 8890
tcp6       0      0 :::8890                 :::*                    LISTEN      3073/ollama   

2.3. 其它容器安装方式(备选项)

实验环境也可以考虑使用docker安装,不会干扰本地环境,但使用异常排查问题时相对麻烦一些,docker运行需要有NVIDIA显卡支持,需要配置

  • 拉取 Ollama 镜像

    docker pull ollama/ollama:latest
    
  • 启动 Ollama 容器

    docker run -d --name ollama -p 11434:11434 ollama/ollama:latest
    
  • 验证安装

    curl http://localhost:11434/
    

3. 使用和维护Ollama

3.1 基础维护命令

  • 启动服务

    systemctl start ollama
    
  • 停止服务

    systemctl stop ollama
    
  • 查看服务状态

    systemctl status ollama(py38) root@wangt:~/ollama# curl 127.0.0.1:8890
    Ollama is running
    
  • 查看版本信息

root@wangt:~/ollama# ollama --version
ollama version is 0.6.2
  • 模型存储路径
root@wangt:~# ll /usr/share/ollama/.ollama/models/
total 16
drwxr-xr-x 4 ollama ollama 4096 Apr  1 03:17 ./
drwxr-xr-x 3 ollama ollama 4096 Apr  1 02:58 ../
drwxr-xr-x 2 ollama ollama 4096 Apr  1 04:40 blobs/
drwxr-xr-x 3 ollama ollama 4096 Apr  1 03:17 manifests/

3.2 模型管理命令

ollama官方模型仓库地址:https://ollama.com/library

3.2.1 运行模型

在官方模型仓库,找到自己想要的模型进入,根据自己用途情况,选择参数量后,复制右边的运行命令即可,类似于docker的使用方式

root@wangt:~/ollama# OLLAMA_HOST=127.0.0.1:8890 ollama run qwen2.5:0.5b
pulling manifest 
pulling c5396e06af29... 100%                                           
verifying sha256 digest 
writing manifest 
success # 尝试体验,问出问题
>>> 现在股票市场,创业板一共有多少家上市公司?
目前,创业板在A股市场上共设有50家公司。这个数目已经随着市场的变动而有所调整。如果您需要最新的资讯和详细信息,请留意财经新闻、官方网站或其他官方渠道以获取最准确的信息。不过,一般来说,创业板的规模较大,通常与市值相对较高的公司有关,其上市公司的数量较多,
因为它们往往是具有较高知名度和技术实力的企业。>>> Send a message (/? for help)

安装完成会进入到模型交互界面,直接可以和离线模型进行交互提问,使用命令/?,可以查看操作清单

>>> /?
Available Commands:/set            Set session variables/show           Show model information/load <model>   Load a session or model/save <model>   Save your current session/clear          Clear session context/bye            Exit/?, /help       Help for a command/? shortcuts    Help for keyboard shortcutsUse """ to begin a multi-line message.>>> /bye
root@wangt:~/ollama# 
  • 根据自己需要,可以去下载多个需要使用到的模型,例如再下载安装一个deepseek-r1

  • ollama run运行的模型,会先检查本地model,本地已经存在时,不会重新拉取,直接运行

root@wangt:~/ollama# OLLAMA_HOST=127.0.0.1:8890 ollama run deepseek-r1:7b
pulling manifest 
pulling 96c415656d37... 100%                      
verifying sha256 digest 
writing manifest 
success 
>>> 你是什么模型?我是一个AI助手,由中国的深度求索(DeepSeek)公司独立开发,我清楚自己的身份与局限,会始终秉持专业和诚实的态度帮助用户。
>>> /bye
3.2.2 列出可用模型
root@wangt:~/ollama# OLLAMA_HOST=127.0.0.1:8890 ollama list
NAME              ID              SIZE      MODIFIED       
deepseek-r1:7b    0a8c26691023    4.7 GB    2 minutes ago     
qwen2.5:0.5b      a8b0c5157701    397 MB    21 minutes ago 

也可以通过接口的方式查看:

root@wangt:~/ollama# curl http://localhost:8890/api/tags
{"models": [{"name": "deepseek-r1:7b","model": "deepseek-r1:7b","modified_at": "2025-04-01T03:35:42.956003391Z","size": 4683075271,"digest": "0a8c266910232fd3291e71e5ba1e058cc5af9d411192cf88b6d30e92b6e73163","details": {"parent_model": "","format": "gguf","family": "qwen2","families": ["qwen2"],"parameter_size": "7.6B","quantization_level": "Q4_K_M"}},{"name": "qwen2.5:0.5b","model": "qwen2.5:0.5b","modified_at": "2025-04-01T03:17:35.053991433Z","size": 397821319,"digest": "a8b0c51577010a279d933d14c2a8ab4b268079d44c5c8830c0a93900f1827c67","details": {"parent_model": "","format": "gguf","family": "qwen2","families": ["qwen2"],"parameter_size": "494.03M","quantization_level": "Q4_K_M"}}]
}
3.2.3 模型管理
  • 查看模型信息
root@wangt:~/ollama# OLLAMA_HOST=127.0.0.1:8890 ollama show qwen2.5:0.5bModelarchitecture        qwen2      parameters          494.03M    context length      32768      embedding length    896        quantization        Q4_K_M     SystemYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.    LicenseApache License               Version 2.0, January 2004    
  • 下载模型
root@wangt:~/ollama# OLLAMA_HOST=127.0.0.1:8890 ollama pull deepseek-r1:14b

使用到这里,命令总是加OLLAMA_HOST参数并不是很方便,我们可以增加alias,来简化命令

root@wangt:~/ollama# alias ollama='OLLAMA_HOST=127.0.0.1:8890 ollama'
root@wangt:~/ollama# ollama list
NAME               ID              SIZE      MODIFIED          
deepseek-r1:14b    ea35dfe18182    9.0 GB    25 minutes ago       
deepseek-r1:7b     0a8c26691023    4.7 GB    58 minutes ago       
qwen2.5:0.5b       a8b0c5157701    397 MB    About an hour ago  
  • 删除模型
root@wangt:~/ollama# ollama rm qwen2.5:0.5b
deleted 'qwen2.5:0.5b'
root@wangt:~/ollama# ollama list
NAME               ID              SIZE      MODIFIED          
deepseek-r1:14b    ea35dfe18182    9.0 GB    32 minutes ago       
deepseek-r1:7b     0a8c26691023    4.7 GB    About an hour ago   
  • 模型复制拷贝
root@wangt:~/ollama# ollama cp deepseek-r1:14b deepseek-r1_bak20250401:14b
copied 'deepseek-r1:14b' to 'deepseek-r1_bak20250401:14b'
root@wangt:~/ollama# ollama list
NAME                           ID              SIZE      MODIFIED          
deepseek-r1_bak20250401:14b    ea35dfe18182    9.0 GB    5 seconds ago        
deepseek-r1:14b                ea35dfe18182    9.0 GB    37 minutes ago       
deepseek-r1:7b                 0a8c26691023    4.7 GB    About an hour ago  
  • 列出正在运行的模型
# 运行一个model
root@wangt:~# ollama run deepseek-r1:14b
>>> Send a message (/? for help)# 另起一个会话窗口查看
root@wangt:~# ollama ps
NAME               ID              SIZE     PROCESSOR    UNTIL              
deepseek-r1:14b    ea35dfe18182    11 GB    100% GPU     3 minutes from now    
  • 非交互式查询大模型
root@wangt:~/ollama# echo "上海的土地面积是多大?" | ollama run deepseek-r1:14b上海市的市域总面积约为6340平方公里。
root@wangt:~/ollama# 
3.2.4 通过调接口方式查询ollama大模型
# 格式如下
curl -X POST http://localhost:8890/api/generate -d '{"model": "deepseek-r1:14b","prompt": "上海的土地面积是多大?","stream": false
}'# 返回
{"model":"deepseek-r1:14b","created_at":"2025-04-01T06:14:56.00815753Z","response":"\u003cthink\u003e\n\n\u003c/think\u003e\n\n截至2023年,上海市的**土地总面积**约为**6,340平方公里**。这一数据包括了市辖区、郊县等区域的土地面积。具体来说:\n\n- **市区**(包括黄浦、静安、长宁、徐汇、杨浦、虹口、普陀、闸北、浦东新区等区)面积较小,约为**500平方公里**。\n- **郊区和远郊地区**面积较大,约占总面积的绝大部分。\n\n需要注意的是,上海市的土地利用情况复杂,包括建设用地、农用地、生态保护区等多种类型。如果您需要更详细的数据或具体区域的面积信息,可以参考当地统计局或自然资源部门发布的官方资料。","done":true,"done_reason":"stop","context":[151644,100633,109633,100210,20412,42140,26288,11319,151645,151648,271,151649,271,102219,17,15,17,18,7948,3837,105425,9370,334,101962,111603,334,107679,334,21,11,18,19,15,107231,334,1773,100147,20074,100630,34187,22697,103022,5373,103074,24342,49567,101065,109633,100210,1773,100398,99883,48443,12,3070,105587,334,9909,100630,99789,101465,5373,99541,50285,5373,45861,99503,5373,101957,99833,5373,101058,101465,5373,101522,39426,5373,99537,103441,5373,107964,48309,5373,112407,104879,49567,23836,7552,100210,109413,3837,107679,334,20,15,15,107231,334,8997,12,3070,117074,33108,99427,103074,100361,334,100210,104590,3837,115085,111603,9370,113604,3407,107916,100146,3837,105425,109633,100152,99559,102181,3837,100630,115138,5373,99288,102763,5373,100171,113891,107860,31905,1773,106870,85106,33126,100700,105918,57191,100398,101065,9370,100210,27369,3837,73670,101275,100198,112997,57191,110130,99667,105645,100777,101111,1773],"total_duration":2058396882,"load_duration":16299691,"prompt_eval_count":10,"prompt_eval_duration":13808729,"eval_count":150,"eval_duration":2027756646}

3.3 加载自定义模型(按需使用场景)

如果有需要加载一些自定义的模型,操作方式如下

  • 其它途径下载的模型文件
    将模型文件(如 .bin.gguf 格式)下载到本地。

  • 加载模型

ollama create <model_name> --file <model_file>

4. 界面化操作-Ollama WebUI

4.1 安装Open WebUI

(原 Ollama WebUI)

  • docker方式部署
docker run -d -p 8891:8080 -e OLLAMA_BASE_URL=http://140.210.92.250:8890 -v open-webui:/app/backend/data --name ollama-web --restart always ghcr.io/open-webui/open-webui:main

注意:

  1. -p 8891:8080 ,表示web-ui通过8891端口进行访问,本容器则表示ui地址:http://140.210.92.250:8891
  2. OLLAMA_API_BASE_URL=http://140.210.92.250:8890,这里需要改成自己的ollama服务地址

4.2 使用Open WebUI

第一次登录,需要注册,且这个注册账号为管理员,注册完成后登录即可

截止到这里,相当于一个离线的大模型+web-ui查询的整个环境就算完成了,选择一个模型,尝试使用一下。

只要本地资源充足,可以通过ollama下载更大的模型进行使用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/76472.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决Centos7集成IDEA报git版本太低问题

Centos 7 服务器上默认安装的 Git 是 1.8.3.1 版本的 与最新的IDEA已无法匹配&#xff0c;需要更新 首先&#xff0c;卸载老版本 sudo yum -y remove git sudo yum -y remove git-*添加 End Point 到 CentOS 7 仓库 sudo yum -y install https://packages.endpointdev.com/r…

Qt常用宏定义判断大全

Qt 提供了一系列预定义宏用于判断 Qt 版本、操作系统平台、编译器特性等。这些宏在跨平台开发中非常有用。 1. Qt 版本判断宏 // 检查Qt版本 #if QT_VERSION > QT_VERSION_CHECK(5, 15, 0)// Qt 5.15.0及以上版本特有代码 #endif// 常用版本判断 #if QT_VERSION > QT_V…

实战 | 餐厅点餐小程序技术解析:SpringBoot + UniApp 高效开发指南

&#x1f5a5;️ 一、系统架构概览 1.1 技术选型 为了确保开发效率和系统稳定性&#xff0c;我们采用以下技术栈&#xff1a; 模块技术选型后台服务SpringBoot MyBatis-Plus MySQL用户端&#xff08;点餐小程序&#xff09;UniApp&#xff08;Vue 语法&#xff09;师傅端&…

实现在Unity3D中仿真汽车,而且还能使用ros2控制

文章目录 前言&#xff08;Introduction&#xff09;搭建开发环境&#xff08;Setup Development Environment&#xff09;在window中安装Unity&#xff08;Install Unity in window&#xff09;创建Docker容器&#xff0c;并安装相关软件&#xff08;Create Docker containers…

华为配置篇-BGP实验

BGP 一、简述二、常用命令总结三、实验 一、简述 IBGP 水平分割&#xff1a;从一个 IBGP 对等体学到的路由&#xff0c;不会再通告给其他的 IBGP 对等体。在一个 AS 内部&#xff0c;路由器之间通过 IBGP 交换路由信息。如果没有水平分割机制&#xff0c;当多个路由器之间形成…

Python视频标签工具详解:基于wxPython和FFmpeg的实现

在当今数字媒体时代&#xff0c;视频内容的管理和标记变得越来越重要。无论是研究人员需要对实验视频进行时间点标记&#xff0c;教育工作者需要对教学视频添加注释&#xff0c;还是个人用户希望对家庭视频进行分类整理&#xff0c;一个高效的视频标签工具都是不可或缺的。本文…

国产三维CAD「皇冠CAD」在汽车零部件领域建模教程:刹车片

本教程深度融合三维皇冠CAD&#xff08;CrownCAD&#xff09;的MBD&#xff08;Model-Based Definition&#xff09;设计理念&#xff0c;通过参数化建模、智能约束管理、动态装配验证等功能&#xff0c;实现数据驱动设计&#xff0c;精准解决了汽车制动系统中精密制动组件的设…

C#从入门到精通(3)

目录 第九章 窗体 &#xff08;1&#xff09;From窗体 &#xff08;2&#xff09;MDI窗体 &#xff08;3&#xff09;继承窗体 第十章 控件 &#xff08;1&#xff09;控件常用操作 &#xff08;2&#xff09;Label控件 &#xff08;3&#xff09;Button控件 &…

关于跨域与.NET的处理方案

在 Web 开发里&#xff0c;浏览器的同源策略是一项关键的安全机制。同源指的是两个 URL 的协议、域名和端口都相同。当浏览器从一个源&#xff08;域名、协议、端口&#xff09;的网页去请求另一个源的资源时&#xff0c;就会产生跨域问题。例如&#xff0c;从 http://www.exam…

react 15-16-17-18各版本的核心区别、底层原理及演进逻辑的深度解析--react18

React 18 是一次重大的版本升级&#xff08;发布于2022年&#xff09;&#xff0c;引入了并发渲染&#xff08;Concurrent Rendering&#xff09; 和一系列新特性&#xff0c;旨在提升应用性能、用户体验和开发灵活性。 一、核心新特性 并发模式&#xff08;Concurrent Mode&a…

基于Spring Boot的平面设计课程在线学习平台系统的设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…

Scala-面向对象

Scala 包 基本语法 package 包名 Scala 包的三大作用&#xff08;和 Java 一样&#xff09; 区分相同名字的类 当类很多时&#xff0c;可以很好的管理类 控制访问范围 包的命名、说明、对象 包的命名 命名规则 只能包含数字、字母、下划线、小圆点.&#xff0c;但不能用数字…

Excel 使用技巧:excel 合并不同列内容; excel 将公式转化为文本

Excel 使用技巧 目录 Excel 使用技巧excel 合并不同列内容="A:"&C1&"、B:"&D1&"、C:"&E1&"、D:"&F1excel 将公式转化为文本右键选择行粘贴某一列均填入“提示词”单击拖动双击某一列均填入“1”清除1…

【数字化转型,企业应用上云】---持续集成能力重塑企业软件交付新范式

在数字化转型浪潮中&#xff0c;软件交付的速度与质量已成为企业核心竞争力的关键。如何高效管理从代码开发到生产上线的全流程&#xff0c;实现开发与运维的无缝协作&#xff1f;如何通过自动化手段减少人为失误、加速迭代周期&#xff1f;我们出的研发效能管理平台&#xff0…

OpenCV图像形态学:原理、操作与应用详解

一、引言 图像形态学&#xff08;Image Morphology&#xff09;是图像处理领域的一个重要分支&#xff0c;它基于集合论、格论、拓扑学和随机函数理论&#xff0c;主要用于分析和处理图像的几何结构。形态学操作通过特定的结构元素&#xff08;Structuring Element&#xff09;…

jenkins 参数化发布到服务器 publish over ssh、label、Parameterized publishing

前言 jenkins 参数化发布到服务器 jenkins可匹配标签通过一个字符串或者正则表达式来匹配jenkins 可通过参数配置发布到服务器&#xff0c;比如打包后&#xff0c;根据参数配置&#xff0c;只发布到某个服务器。 设置选项参数 新增选项参数&#xff0c;比如填入myParameter…

第十二章网络规划设计

文章目录 12-1考点分析12-2综合布线(历年高频考点)12-3网络设计与分析12-4网络结构与功能12-5广域网接入技术12-6网络故障诊断与排查章节总结 12-1考点分析 12-2综合布线(历年高频考点) 结构化布线系统 网络规划和设计是一个迭代和优化的过程。 ■ 结构化综合布线系统是基于…

Qt基本框架(1)

本篇主要介绍Qt的基本框架&#xff0c;并实现简单的按钮事件 本文部分ppt、视频截图原链接&#xff1a;[萌马工作室的个人空间-萌马工作室个人主页-哔哩哔哩视频] 1. Qt基本框架介绍 Qt基本框架主要分为两部分&#xff1a;Qt实例对象和Qt窗口。Qt实例对象负责初始化Qt运行时…

数据仓库项目启动与管理

数据仓库项目启动与管理 确定项目 评估项目就绪情况 项目就绪的三个条件 强力型高级业务管理发起人 对数据仓库解决方案的影响有先见之明是所在组织内有影响的领导者要求严格,但是又比较现实,会为其他成员提供强力支持 强制型业务动机 数据仓库系统和战略性业务动机紧密结合…

C 标准库 - `<ctype.h>`

C 标准库 - <ctype.h> 在C语言编程中&#xff0c;标准库函数 <ctype.h> 提供了一组用于检查字符类型、转换大小写以及其他字符处理的函数。这些函数对于字符处理和字符串操作至关重要&#xff0c;特别是在处理用户输入或文件内容时。以下是关于 <ctype.h> 标…