动态规划算法:路径问题

例题一

解法(动态规划):
算法思路:
1. 状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式。
2. 状态转移⽅程:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之前的⼀⼩步,有两种情况:
i. 从 [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到 [i, j] 位置;
ii. 从 [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。
由于我们要求的是有多少种⽅法,因此状态转移⽅程就呼之欲出了: dp[i][j] = dp[i - 1][j]+dp[i][j-1]。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,「添加⼀⾏」,并且「添加⼀列」后,只需将 dp[0][1] 的位置初始化为 1 即可。
4. 填表顺序:
根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,在填写每⼀⾏的时候
「从左往右」。
5. 返回值:
根据「状态表⽰」,我们要返回 dp[m][n] 的值。

例题二

解法(动态规划):
算法思路:
本题为不同路径的变型,只不过有些地⽅有「障碍物」,只要在「状态转移」上稍加修改就可。
1. 状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式: dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式。
2. 状态转移:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之 前的⼀⼩步,有两种情况:
i. [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到[i, j] 位置;
ii. [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。
但是, [i - 1, j] [i, j - 1] 位置都是可能有障碍的,此时从上⾯或者左边是不可能到达 [i, j] 位置 的,也就是说,此时的⽅法数应该是 0。 由此我们可以得出⼀个结论,只要这个位置上「有障碍物」,那么我们就不需要计算这个位置上的值,直接让它等于 0 即可。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,添加⼀⾏,并且添加⼀列后,只需将 dp[1][0] 的位置初始化为 1 即可。
4. 填表顺序:
根据「状态转移」的推导,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往右」。
5. 返回值:
根据「状态表⽰」,我们要返回的结果是 dp[m][n]

例题三

解法(动态规划):
算法思路:
1. 状态表⽰: 对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式: dp[i][j] 表⽰:⾛到 [i, j] 位置处,此时的最⼤价值。
2. 状态转移⽅程:
对于 dp[i][j] ,我们发现想要到达 [i, j] 位置,有两种⽅式:
i. 从 [i, j] 位置的上⽅ [i - 1, j] 位置,向下⾛⼀步,此时到达 [i, j] 位置能拿到的礼物价值为
dp[i - 1][j] + grid[i][j]
ii. 从 [i, j] 位置的左边 [i, j - 1] 位置,向右⾛⼀步,此时到达 [i, j] 位置能拿到的礼物价值为
dp[i][j - 1] + grid[i][j]
我们要的是最⼤值,因此状态转移⽅程为:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有的值都为 0 即可。
4. 填表顺序:
根据「状态转移⽅程」,填表的顺序是「从上往下填写每⼀⾏」,「每⼀⾏从左往右」。
5. 返回值:
根据「状态表⽰」,我们应该返回 dp[m][n] 的值。

例题四

解法(动态规划):
算法思路:
关于这⼀类题,由于我们做过类似的,因此「状态表⽰」以及「状态转移」是⽐较容易分析出来的。 ⽐较难的地⽅可能就是对于「边界条件」的处理。
1. 状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,到达⽬标位置有多少种⽅式;
ii. 从起始位置出发,到达 [i, j] 位置,⼀共有多少种⽅式
这⾥选择第⼆种定义状态表⽰的⽅式:dp[i][j] 表⽰:到达 [i, j] 位置时,所有下降路径中的最⼩和。
2. 状态转移⽅程:
对于普遍位置 [i, j] ,根据题意得,到达 [i, j] 位置可能有三种情况:
i. 从正上⽅ [i - 1, j] 位置转移到 [i, j] 位置;
ii. 从左上⽅ [i - 1, j - 1] 位置转移到 [i, j] 位置;
iii. 从右上⽅ [i - 1, j + 1] 位置转移到 [i, j] 位置;
我们要的是三种情况下的「最⼩值」,然后再加上矩阵在 [i, j] 位置的值。
于是 dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j + 1])) + matrix[i][j] 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。 在本题中,需要「加上⼀⾏」,并且「加上两列」。所有的位置都初始化为⽆穷⼤,然后将第⼀⾏初始化为 0 即可。
4. 填表顺序:
根据「状态表⽰」,填表的顺序是「从上往下」。
5. 返回值:
注意这⾥不是返回 dp[m][n] 的值!
题⽬要求「只要到达最后⼀⾏」就⾏了,因此这⾥应该返回「 dp 表中最后⼀⾏的最⼩值」。

例题五

解法(动态规划):
算法思路:
像这种表格形式的动态规划,是⾮常容易得到「状态表⽰」以及「状态转移⽅程」的,可以归结到
「不同路径」⼀类的题⾥⾯。
1. 状态表⽰:
对于这种路径类的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式: dp[i][j] 表⽰:到达 [i, j] 位置处,最⼩路径和是多少。
2. 状态转移:
简单分析⼀下。如果 dp[i][j] 表⽰到达 到达 [i, j] 位置处的最⼩路径和,那么到达 [i, j] 位置之前的⼀⼩步,有两种情况:
i. 从 [i - 1, j] 向下⾛⼀步,转移到 [i, j] 位置;
ii. 从 [i, j - 1] 向右⾛⼀步,转移到 [i, j] 位置。
由于到 [i, j] 位置两种情况,并且我们要找的是最⼩路径,因此只需要这两种情况下的最⼩值,再加上 [i, j] 位置上本⾝的值即可。也就是: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
3. 初始化:可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。 在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有位置的值可以初始化为⽆穷⼤,然后让dp[0][1] = dp[1][0] = 1 即可。
4. 填表顺序:
根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往后」。
5. 返回值:
根据「状态表⽰」,我们要返回的结果是 dp[m][n]

例题六

解法(动态规划):
算法思路:
1. 状态表⽰:
这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。
那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后⾯的路径的影
响。也就是从上往下的状态转移不能很好地解决问题。
这个时候我们要换⼀种状态表⽰:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。
综上所述,定义状态表⽰为:dp[i][j] 表⽰:从[i, j]位置出发,到达终点时所需的最低初始健康点数。
2.
状态转移⽅程:
对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择
(为了⽅便理解,设 dp[i][j] 的最终答案是 x ):
i. ⾛到右边,然后⾛向终点
那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j]
ii. ⾛到下边,然后⾛向终点
那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j]
综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:
dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]
但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j]如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j]与 1 取⼀个最⼤值即可:
dp[i][j] = max(1, dp[i][j])
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。在本题中,在 dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让 dp[m][n - 1] = dp[m - 1][n] = 1 即可。
4. 填表顺序:
根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。
5. 返回值:
根据「状态表⽰」,我们需要返回 dp[0][0] 的值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/7158.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Simcenter全面评估SiC 器件的特性

内容摘要 传统的硅金属-氧化物-半导体场效应晶体管 (MOSFET) 具有成熟的技术和低廉的成本,在中压和绝缘栅双极晶体管 (IGBT) 高压功率电子器件中占主导地位。使用碳化硅等具有高电离能的新型宽带隙材料,可以制造出具有快速开关时间和超过1,000伏击穿电压…

博客网站SpringBoot+Vue项目练习

博客网站SpringBootVue简单案例 前言 学了vue后一直没用找到应用的机会,在Github上找到了一个看起来比较友好的项目(其实具体代码我还没看过)。而且这个项目作者的readme文档写的也算是比较好的了。 项目链接:https://github.c…

【LeetCode刷题】739. 每日温度(单调栈)

1. 题目链接2. 题目描述3. 解题方法4. 代码 1. 题目链接 739. 每日温度 2. 题目描述 3. 解题方法 用一个栈st保存每个数的下标,同时创建一个数组res保存结果,初始值都为0。循环遍历题目中的数组temperature。如果temperature[i] > st.top()&#x…

MATLAB和Python网格桁架框架构件刚度载荷位移和受力微分方程

🎯要点 数学​方法​:🎯一维线性边界值问题:🖊高斯求积法则 | 🖊洛巴托求积法则 | 🖊矩阵插值和微分计算 | 🖊在细化网格上生成值。🎯二维边界值问题:构建二…

Linux--IIC驱动编程实验

对于 I2C 主机驱动,一旦编写完成就不需要再做修改,其他的 I2C 设备直接调用主机驱动提供的 API 函数完成读写操作即可。这个正好符合 Linux 的驱动分离与分层的思想,因此 Linux内核也将 I2C 驱动分为两部分: ①、 I2C 总…

虚拟化之---virtio通信

一、理解virtio的背景 我们知道虚拟化hypervisor大的类型分为两种,全虚拟化和半虚拟化。 在全虚拟化的解决方案中,guest VM 要使用底层 host 资源,需要 Hypervisor 来截获所有的请求指令,然后模拟出这些指令的行为,这样…

Java毕设之学院党员管理系统的设计与实现

运行环境 环境说明: 开发语言:java 框架:springboot,vue JDK版本:JDK1.8 数据库:mysql5.7(推荐5.7,8.0也可以) 数据库工具:Navicat11 开发软件:idea/eclipse(推荐idea) Maven包:Maven3.3.9 系统实现 管理员功能实现 党员管理 管理员进入指定功能操作…

算法学习:二分查找

🔥 引言 在现代计算机科学与软件工程的实践中,高效数据检索是众多应用程序的核心需求之一。二分查找算法,作为解决有序序列查询问题的高效策略,凭借其对数时间复杂度的优越性能,占据着算法领域里举足轻重的地位。本篇内…

如何使用resource-counter统计跨Amazon区域的不同类型资源数量

关于resource-counter resource-counter是一款功能强大的命令行工具,该工具基于纯Python 3开发,可以帮助广大研究人员跨Amazon区域统计不同类型资源的数量。 该工具在统计完不同区域的各类资源数量后,可以在命令行中输出并显示统计结果。res…

【driver5】调用堆栈函数,printk,动态打印,ftrace,proc,sysfs

文章目录 1.内核函数调用堆栈:4个函数2.printk:cat /proc/cmdline查看consolettyS03.动态打印:printk是全局的且只能设打印等级,动态打印可控制选择模块的打印,在内核配置打开CONFIG_DYNAMIC_DEBUG4.ftrace&#xff1a…

贪吃蛇项目(小白保姆级教程)

游戏介绍 游戏背景: 贪吃蛇游戏是经典的游戏项目之一,也是很简单的小游戏 实现背景: 这里我们是基于32位的Win32_API进行实现的 需要的知识点: C语言函数、枚举、结构体、动态内存管理、预处理指令、链表、Win32_API等 适合人群&a…

通过packageKit完成的系统更新(一)

最近在学习packagekit,学习是如何进行的系统更新,本系列主要讲述,如何使用packageKit接口实现系统更新。 1. 导入依赖 在使用packageKit 之前需要导入一些依赖和安装一些包,不然会报错,以下以报错信息讲解:…

分布式光伏管理系统和一般的光伏管理系统相比有什么区别?

随着全球对可再生能源的关注度日益提高,光伏技术作为其中的佼佼者,已经得到了广泛的应用。在光伏技术中,管理系统扮演着至关重要的角色,它关乎着光伏电站的运行效率、能源产出以及运维成本等多个方面。其中,分布式光伏…

搜索算法系列之四(斐波那契)

以下算法被验证过,如有什么问题或有补充的欢迎留言。 前言 斐波那契数列,又称黄金分割数列,是由意大利数学家(Leonardo Fibonacci)在1202年提出的。这个数列的递推关系是F(0)1,F(1)1,F(n)F(n-…

【数据库】docker搭建mysql8一主两从节点,配置proxysql读写分离

docker搭建mysql8一主两从节点,配置proxysql读写分离 一、docker 搭建 mysql8 一主两从节点1.1 相关配置文件与docker启动1.2 半同步复制1.3 主从同步异常处理 二、mysql 中间件 ProxySql 配置读写分离2.1 在mysql服务里创建给proxySQL访问的用户2.2 安装ProxySql及…

测试用例执行的结果pass_fail_block_skip

pass fail block skip 测试用例的执行结果通常包括以下几个方面: 1. **测试结果状态**:通常分为“通过”、“失败”、“阻塞”和“跳过”等状态。 - **通过**:测试用例执行完毕,预期结果与实际结果一致。 - **失败**&am…

【MySQL】——用户和权限管理(二)

💻博主现有专栏: C51单片机(STC89C516),c语言,c,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux&#xf…

大模型争霸的下一站:不仅是超越GPT-4,更是寻求模型之间的平衡应用

文 | 智能相对论 作者 | 沈浪 知名科学杂志《Nature》发表了一篇关于大模型规模参数大小争议的文章《In Al, is bigger always better?》——AI大模型,越大越好吗?随着大模型应用走向实践,这一问题不可避免地成为了当前AI行业发展的焦点与…

OpenGL 入门(二)—— 渲染摄像头采集的预览画面

本篇主要内容: 将摄像头采集到的图像通过 OpenGL 绘制到屏幕上FBO 离屏渲染 在开始上述流程前,我们有必要对 SurfaceTexture 做一个简单了解,因为 OpenGL 需要通过它获取要绘制的图像。 1、认识 SurfaceTexture SurfaceTexture 是 Androi…

Go Energy GUI框架 cli 使用

energy cli 简单介绍与使用 Go ENERGY 命令行工具 简介 版本: energy v 命令参数 energy [options] 参数名说明install环境安装init应用初始化build编译&构建应用package制作应用安装包version查看所有已发行版本env查看开发环境变量setenv设置开发环境变量v查看当前c…