结合深度学习、自然语言处理(NLP)与多准则决策的三阶段技术框架,旨在实现从消费者情感分析到个性化决策

针对电商个性化推荐场景的集成机器学习和稳健优化三阶段方案。

第一阶段:在线评论数据处理,利用深度学习和自然语言处理技术进行特征挖掘,进而进行消费者情感分析,得到消费者偏好
在第一阶段,我们主要关注如何通过深度学习和自然语言处理技术来处理在线评论数据,挖掘特征,并进行消费者情感分析。首先,利用XGBoost进行特征提取;然后,使用预训练模型BERT来识别和分类评论中的情感倾向,获取特征的情感得分;最后,设计特征的权重计算模型,得到消费者的加权情感得分,即偏好。
.
第二阶段:大规模多准则决策模型构建,进行专家决策分析
在第二阶段,我们关注如何构建大规模多准则决策模型,并进行专家决策分析。首先,构建的产品决策模型应考虑数据的超载和动态性。该方法不仅可以从在线评论中学习消费者群体的属性偏好,也可以帮助潜在消费者根据学习的群体偏好,通过偏好交互确定消费者自身的个体偏好,并为其计算备选产品的排序结果,实现个性化在线决策支持,
.
第三阶段:第一阶段所得的消费者偏好与专家偏好进行融合,构建反馈机制,融入决策模型第三阶段的目标是将消费者和专家的意见融合,并构建反馈机制融入决策模型。首先,提出了一种新的混合决策方法,该方法将机器学习和稳健优化相结合,用于产品开发和改进。这种方法整合了消费者和专家的偏好,在满足市场需求的同时满足专家的专业

第一阶段:在线评论数据处理与消费者偏好挖掘

目标:从海量评论中提取产品属性特征,分析消费者情感倾向,生成加权偏好得分。
实验步骤
  1. 数据采集与清洗

    • 工具:Scrapy(爬取评论)、Python正则表达式(清洗数据)。
    • 步骤
      • 爬取电商平台评论(如京东、天猫),存储为结构化数据(JSON/CSV)。
      • 清洗噪声数据(广告、无意义符号),保留“评论内容”“评分”“用户ID”“产品ID”等字段。
  2. 特征提取与情感分析

    • 工具:XGBoost(特征选择)、Hugging Face Transformers(BERT微调)。
    • 流程
      • 文本向量化
        • 使用TF-IDF或BERT生成评论的句向量(768维)。
      • 属性特征提取
        • 构建产品属性词典(如“屏幕”“续航”“外观”),通过XGBoost筛选高重要性特征。
        • 示例:XGBoost.fit(评论向量, 用户评分),输出特征重要性排序。
      • 细粒度情感分类
        • 微调BERT模型:输入评论文本,输出多标签情感得分(如“屏幕-正面”“续航-负面”)。
        • 模型训练:使用PyTorch,损失函数为交叉熵,优化器为AdamW。
  3. 偏好权重计算

    • 方法:动态熵权法 + 用户行为反馈
      • 计算初始权重:基于特征情感得分的熵值(信息量越大,权重越高)。

      • 动态调整:根据用户点击/购买行为(如点击某产品后修改“价格”权重),更新公式:
        [
w_i^{(t+1)} = \alpha w_i^{(t)} + (1-\alpha) \cdot \frac{\text{点击次数}_i}{\sum \text{点击次数}_j}
]

        (α为衰减因子,通常取0.8~0.9)

  4. 输出结果

    • 结构化偏好数据表:
      用户ID产品属性情感得分动态权重加权偏好
      U001屏幕0.850.30.255
      U001续航0.60.50.3
评估指标
  • 情感分析准确率:BERT模型在测试集上的F1-score(目标>0.85)。
  • 特征重要性一致性:人工抽样验证XGBoost筛选的Top 10属性是否符合业务认知。

第二阶段:大规模多准则决策模型构建

目标:整合群体偏好与个体偏好,生成个性化产品排序。
实验步骤
  1. 群体偏好建模

    • 工具:Apache Spark MLlib(分布式聚类)、Redis(缓存热点数据)。
    • 方法
      • 对全体用户的加权偏好进行聚类(K-means),划分用户群体(如“性价比党”“品质控”)。
      • 存储群体偏好模板:
        {"群体ID": "G001","偏好": {"屏幕": 0.3, "续航": 0.5, "价格": 0.2},"覆盖用户数": 12000
        }
        
  2. 个体偏好交互与优化

    • 工具:React.js(前端交互界面)、Django(后端API)。
    • 流程
      • 偏好初始化:为用户分配所属群体的偏好模板。
      • 交互式调整:用户通过滑块修改权重(如将“价格”权重从0.2提升至0.4)。
      • 多目标排序
        • 使用NSGA-II算法生成帕累托最优解集,目标函数为:
          在这里插入图片描述

        • 输出Top 10产品列表,按综合效用值排序。

  3. 动态更新机制

    • 技术:Apache Flink(实时计算)、增量学习(Online Learning)。
    • 策略
      • 每6小时更新群体聚类结果,新用户行为数据通过Flink实时写入Redis。
      • 使用River库在线更新NSGA-II的权重参数。
评估指标
  • 推荐效果:A/B测试对比点击率(CTR)与转化率(传统推荐 vs. MCDM推荐)。
  • 计算延迟:从用户提交偏好到返回排序结果的时间(目标<500ms)。

第三阶段:消费者-专家偏好融合与反馈机制

目标:平衡市场需求与专业意见,构建闭环优化系统。
实验步骤
  1. 偏好融合模型

    • 方法:博弈论融合 + 鲁棒优化
      • 专家权重生成:通过德尔菲法(Delphi)收集专家对属性的评分(如“续航”重要性为0.7)。

      • 混合权重计算
        在这里插入图片描述
        (λ通过用户满意度反馈动态调整,初始值0.6)

      • 鲁棒优化:构建目标函数时考虑市场波动约束(如价格波动±10%),使用CVXPY求解。

  2. 反馈机制设计

    • 工具:Prometheus(监控)、TensorFlow Serving(模型热更新)。
    • 流程
      • 实时监控推荐效果(如CTR下降10%触发预警)。
      • A/B测试:对比不同融合策略(如(\lambda=0.5) vs. (\lambda=0.7))的收益。
      • 强化学习调参:使用DQN模型根据实时反馈调整(\lambda)值。
  3. 闭环迭代

    • 技术栈:Airflow(任务调度)、MLflow(模型版本管理)。
    • 周期
      • 每周更新一次融合模型参数。
      • 每月重新训练BERT情感分析模型(防止数据漂移)。
评估指标
  • 融合策略收益:对比融合前后的GMV(总交易额)增长率。
  • 专家满意度:通过问卷调查评估专家对推荐结果的认可度(5分制,目标≥4分)。

三阶段技术衔接与工具整合

阶段输入输出核心工具
第一阶段原始评论数据用户-属性偏好矩阵Hugging Face, XGBoost, PyTorch
第二阶段用户偏好矩阵 + 产品属性数据个性化产品排序列表Apache Spark, React, NSGA-II
第三阶段用户/专家偏好 + 市场反馈动态融合策略 + 闭环优化模型CVXPY, Prometheus, DQN

总结与优化方向

  1. 优势
    • 实现从数据挖掘到决策优化的端到端闭环。
    • 兼顾个性化需求与专业意见,提升推荐可信度。
  2. 改进方向
    • 引入图神经网络(GNN)建模用户-产品-属性复杂关系。
    • 联邦学习(Federated Learning)保护用户隐私数据。
    • 结合生成式AI(如GPT-4)生成个性化推荐理由。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/69324.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Websocket从原理到实战

引言 WebSocket 是一种在单个 TCP 连接上进行全双工通信的网络协议&#xff0c;它使得客户端和服务器之间能够进行实时、双向的通信&#xff0c;既然是通信协议一定要从发展历史到协议内容到应用场景最后到实战全方位了解 发展历史 WebSocket 最初是为了解决 HTTP 协议在实时…

[LeetCode]day16 242.有效的字母异位词

242. 有效的字母异位词 - 力扣&#xff08;LeetCode&#xff09; 题目描述 给定两个字符串 s 和 t &#xff0c;编写一个函数来判断 t 是否是 s 的 字母异位词 示例 1: 输入: s "anagram", t "nagaram" 输出: true示例 2: 输入: s "rat"…

UnityShader学习笔记——动态效果

——内容源自唐老狮的shader课程 目录 1.原理 2.Shader中内置的时间变量 3.Shader中经常会改变的数据 4.纹理动画 4.1.背景滚动 4.1.1.补充知识 4.1.2.基本原理 4.2.帧动画 4.2.1.基本原理 5.流动的2D河流 5.1.基本原理 5.2.关键步骤 5.3.补充知识 6.广告牌效果 …

【Redis keys命令有什么问题?】

Redis keys命令有什么问题? 性能问题实际使用中的限制替代方案示例讲解Redis keys命令的问题示例替代方案:使用SCAN命令Java代码示例性能问题 时间复杂度:keys命令的时间复杂度是O(n),其中n是Redis中键的总数。这意味着,当Redis中存储的键数量非常大时,执行keys命令会遍历…

Python用langchain、OpenAI大语言模型LLM情感分析苹果股票新闻数据及提示工程优化应用...

全文链接&#xff1a;https://tecdat.cn/?p39614 本文主要探讨了如何利用大语言模型&#xff08;LLMs&#xff09;进行股票分析。通过使用提供的股票市场和金融新闻获取数据&#xff0c;结合Python中的相关库&#xff0c;如Pandas、langchain等&#xff0c;实现对股票新闻的情…

第19章 Future设计模式(Java高并发编程详解:多线程与系统设计)

1.先给你一张凭据 假设有个任务需要执行比较长的的时间&#xff0c;通常需要等待任务执行结束或者出错才能返回结果&#xff0c; 在此期间调用者只能陷入阻塞苦苦等待&#xff0c; 对此&#xff0c; Future设计模式提供了一种凭据式的解决方案。在我们日常生活中&#xff0c;关…

[Android] 全球网测-版本号4.3.8

[Android] 全球网测 链接&#xff1a;https://pan.xunlei.com/s/VOIV5G3_UOFWnGuMQ_GlIW2OA1?pwdfrpe# 应用介绍 "全球网测"是由中国信通院产业与规划研究所自主研发的一款拥有宽带测速、上网体验和网络诊断等功能的综合测速软件。APP突出六大亮点优势&#xff1a…

判断您的Mac当前使用的是Zsh还是Bash:echo $SHELL、echo $0

要判断您的Mac当前使用的是Zsh还是Bash&#xff0c;可以使用以下方法&#xff1a; 查看默认Shell: 打开“终端”应用程序&#xff0c;然后输入以下命令&#xff1a; echo $SHELL这将显示当前默认使用的Shell。例如&#xff0c;如果输出是/bin/zsh&#xff0c;则说明您使用的是Z…

MYSQL第四次

目录 题目分析 代码实现 一、修改 Student 表中年龄&#xff08;sage&#xff09;字段属性&#xff0c;数据类型由 int 改变为 smallint 二、为 Course 表中 Cno 字段设置索引&#xff0c;并查看索引 三、为 SC 表建立按学号&#xff08;sno&#xff09;和课程号&#xff…

MATLAB | 基于Theil-Sen斜率和Mann-Kendall检验的栅格数据趋势分析

最近看到一些博主分享关于 SenMK 检验的代码&#xff0c;对于新手来说可能有点复杂。我们编写了一段 MATLAB 代码&#xff0c;能够一次性解决这些问题&#xff0c;简化操作流程。我们还准备了几个关于趋势检验的空间分布图&#xff0c;供大家参考。 一、Sens Slope和Mann-Kenda…

72.在 Vue3 中使用 OpenLayers 进行 Drag-and-Drop 拖拽文件解析并显示图形

在 WebGIS 相关的开发中&#xff0c;我们经常需要加载各种地理数据文件&#xff0c;如 GeoJSON、KML、GPX 等。而 OpenLayers 提供了 DragAndDrop 交互组件&#xff0c;使得我们可以通过拖拽方式加载这些文件&#xff0c;并将其中的地理要素渲染到地图上。 本文将详细介绍如何…

VM虚拟机安装群晖系统

下载群晖系统 https://download.csdn.net/download/hmxm6/90351935 安装群晖连接软件 synology-assistant-6.2-24922(在上面的压缩包里面) 准备好VM虚拟机 创建群晖虚拟机 打开下载下来的虚拟机 添加硬盘 选择类型 创建新的磁盘 指定容量 指定存储文件 完成硬盘添加…

瞬态分析中的时域分析与频域分析:原理、对比与应用指南

目录 一、核心概念区分 二、时域分析&#xff1a;时间维度直接求解 1. 基本原理 2. 关键特点 3. 典型算法 4. 应用案例 三、频域分析&#xff1a;频率维度的等效映射 1. 基本原理 2. 关键特点 3. 典型方法 4. 应用案例 四、对比与选择依据 1. 方法论对比 2. 工程…

基于LMStudio本地部署DeepSeek R1

DeepSeek R1 DeepSeek R1是由DeepSeek团队开发的一款高性能AI推理模型&#xff0c;其开源版本包括完整的DeepSeek R1 671B权重&#xff0c;以及基于其蒸馏出的多个小型模型。 DeepSeek R1通过蒸馏技术将推理模式迁移到更小的模型中&#xff0c;显著提升了这些模型的推理能力。…

2.攻防世界 ics-06

题目描述处给出提示 进入题目页面如下 发现只有报表中心能进入下一个页面 页面内容&#xff1a; 发现有传参 改变日期也没有变化 更改id数值页面也没有回显 猜测应该有一个特定id对应的页面即为那一处入侵者留下的数据 下面使用burp suite爆破id值 先用burp suite抓包 右键…

Linux 的使用

补充内容&#xff1a;EasyHPC - Linux基础入门【笔记】 文章目录 文档与教程终端命令 文档与教程 Linux 操作系统目录结构解释 - Linux迷 (linuxmi.com) 一个专注于Linux和开源技术的在线平台&#xff1a;It’s FOSS (itsfoss.com)理解各种命令&#xff1a;explainshell.com -…

机器学习-线性回归(最大似然估计)

机器学习任务可以分为两类: 一类是样本的特征向量 &#x1d499; 和标签 &#x1d466; 之间存在未知的函数关系&#x1d466; h(&#x1d499;)&#xff0c;另一类是条件概率&#x1d45d;(&#x1d466;|&#x1d499;)服从某个未知分布。最小二乘法是属于第一类&#xff0c…

数据完整性与约束的分类

一、引言 为什么需要约束&#xff1f;为了保证数据的完整性。 &#xff08;1&#xff09;数据完整性 数据完整性指的是数据的精确性和可靠性。 为了保证数据的完整性&#xff0c;SQL对表数据进行额外的条件限制&#xff0c;从以下四方面考虑&#xff1a; ①实体完整性&…

autMan奥特曼机器人-对接deepseek教程

一、安装插件ChatGPT 符合openai api协议的大模型均可使用此插件&#xff0c;包括chatgpt-4/chatgpt-3.5-turbo&#xff0c;可自定义服务地址和模型&#xff0c;指令&#xff1a;gpt&#xff0c;要求Python3.7以上&#xff0c;使用官方库https://github.com/openai/openai-pyt…

@[TOC](优先级队列(堆)) 【本节目标】 1. 掌握堆的概念及实现 2. 掌握 PriorityQueue 的使用

优先级队列&#xff08;堆&#xff09; 1. 优先级队列1.1 概念 2. 优先级队列的模拟实现2.1 堆的概念2.2 堆的存储方式2.3 堆的创建2.3.1 堆向下调整2.3.2 堆的创建2.3.3 建堆的时间复杂度 2.4 堆的插入与删除2.4.1 堆的插入2.4.2 堆的删除 2.5 用堆模拟实现优先级队列 【本节目…