蓝桥杯python基础算法(2-1)——排序

目录

一、排序

二、例题 P3225——宝藏排序Ⅰ

三、各种排序比较

四、例题 P3226——宝藏排序Ⅱ


一、排序

(一)冒泡排序

  • 基本思想:比较相邻的元素,如果顺序错误就把它们交换过来。

(二)选择排序

  • 基本思想:在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾

(三)插入排序

  • 基本思想:将未排序数据插入到已排序序列的合适位置。

(四)快速排序

  • 基本思想:选择一个基准值,将数组分为两部分,小于基准值的放在左边,大于基准值的放在右边,然后对左右两部分分别进行排序。

(五)归并排序

  • 基本思想:将数组分成两个子数组,对两个子数组分别进行排序,然后将排序好的子数组合并成一个有序的数组。

 (七)桶排序

  • 基本思想:将待排序的数据元素,按照一定的规则划分到不同的“桶”中。每个桶内的数据元素再根据具体情况进行单独排序(通常可以使用其他简单排序算法,如插入排序),最后将各个桶中排好序的数据元素依次取出,就得到了一个有序的序列。

应用要点

  • 时间复杂度:不同排序算法时间复杂度不同,如冒泡排序、选择排序、插入排序平均时间复杂度为 O(n^2)​,快速排序平均时间复杂度为 O(nlogn)​,归并排序时间复杂度稳定在 O(nlogn)​。蓝桥杯题目对时间限制严格,大数据量下应优先选择 O(nlogn)​ 级别的排序算法。

  • 空间复杂度:有些题目对空间也有限制。例如归并排序空间复杂度为 O(n)​,而快速排序如果实现合理(如原地分区)空间复杂度可以为 O(logn)​。

  • 稳定性:排序稳定性指相等元素在排序前后相对位置是否改变。例如插入排序、冒泡排序是稳定的,选择排序、快速排序是不稳定的。如果题目要求保持相等元素相对顺序,要选择稳定排序算法。

二、例题 P3225——宝藏排序Ⅰ


在一个神秘的岛屿上,有一支探险队发现了一批宝藏,这批宝藏是以整数数组的形式存在的。每个宝藏上都标有一个数字,代表了其珍贵程度。然而,由于某种神奇的力量,这批宝藏的顺序被打乱了,探险队需要将宝藏按照珍贵程度进行排序,以便更好地研究和保护它们。作为探险队的一员,肖恩需要设计合适的排序算法来将宝藏按照珍贵程度进行从小到大排序。请你帮帮肖恩。

输入描述

输入第一行包括一个数字 n ,表示宝藏总共有 n 个。

输入的第二行包括 n 个数字,第 ii 个数字 a[i] 表示第 i 个宝藏的珍贵程度。

数据保证 1≤n≤1000,1≤a[i]≤10^6 。

输出描述

输出 n 个数字,为对宝藏按照珍贵程度从小到大排序后的数组。


# 冒泡排序
def bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n - i - 1):if arr[j] > arr[j + 1]:arr[j], arr[j + 1] = arr[j + 1], arr[j]return arr# 选择排序
def selection_sort(arr):n = len(arr)for i in range(n):min_index = ifor j in range(i + 1, n):if arr[j] < arr[min_index]:min_index = jarr[i], arr[min_index] = arr[min_index], arr[i]return arr# 插入排序
def insertion_sort(arr):n = len(arr)for i in range(1, n):key = arr[i]j = i - 1while j >= 0 and key < arr[j]:arr[j + 1] = arr[j]j = j - 1arr[j + 1] = keyreturn arr# 快速排序
def quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr) // 2]left = [x for x in arr if x < pivot]middle = [x for x in arr if x == pivot]right = [x for x in arr if x > pivot]return quick_sort(left) + middle + quick_sort(right)# 归并排序
def merge_sort(arr):if len(arr) <= 1:return arrmid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]left_half = merge_sort(left_half)right_half = merge_sort(right_half)return merge(left_half, right_half)def merge(left, right):result = []left_index = 0right_index = 0while left_index < len(left) and right_index < len(right):if left[left_index] < right[right_index]:result.append(left[left_index])left_index += 1else:result.append(right[right_index])right_index += 1result.extend(left[left_index:])result.extend(right[right_index:])return result# 桶排序
def bucket_sort(arr):max_val = max(arr)min_val = min(arr)bucket_size = 1000bucket_count = (max_val - min_val) // bucket_size + 1buckets = [[] for _ in range(bucket_count)]for num in arr:index = (num - min_val) // bucket_sizebuckets[index].append(num)for i in range(bucket_count):buckets[i].sort()sorted_arr = []for bucket in buckets:sorted_arr.extend(bucket)return sorted_arrn = int(input())
treasures = list(map(int, input().split()))print("冒泡排序结果:")
print(bubble_sort(treasures[:]))print("选择排序结果:")
print(selection_sort(treasures[:]))print("插入排序结果:")
print(insertion_sort(treasures[:]))print("快速排序结果:")
print(quick_sort(treasures[:]))print("归并排序结果:")
print(merge_sort(treasures[:]))print("桶排序结果:")
print(bucket_sort(treasures[:]))

三、各种排序比较

import time
import random# 冒泡排序
def bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n - i - 1):if arr[j] > arr[j + 1]:arr[j], arr[j + 1] = arr[j + 1], arr[j]return arr# 选择排序
def selection_sort(arr):n = len(arr)for i in range(n):min_index = ifor j in range(i + 1, n):if arr[j] < arr[min_index]:min_index = jarr[i], arr[min_index] = arr[min_index], arr[i]return arr# 插入排序
def insertion_sort(arr):n = len(arr)for i in range(1, n):key = arr[i]j = i - 1while j >= 0 and key < arr[j]:arr[j + 1] = arr[j]j = j - 1arr[j + 1] = keyreturn arr# 快速排序
def quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr) // 2]left = [x for x in arr if x < pivot]middle = [x for x in arr if x == pivot]right = [x for x in arr if x > pivot]return quick_sort(left) + middle + quick_sort(right)# 归并排序
def merge_sort(arr):if len(arr) <= 1:return arrmid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]left_half = merge_sort(left_half)right_half = merge_sort(right_half)return merge(left_half, right_half)def merge(left, right):result = []left_index = 0right_index = 0while left_index < len(left) and right_index < len(right):if left[left_index] < right[right_index]:result.append(left[left_index])left_index += 1else:result.append(right[right_index])right_index += 1result.extend(left[left_index:])result.extend(right[right_index:])return result# 桶排序
def bucket_sort(arr):max_val = max(arr)min_val = min(arr)bucket_size = 1000bucket_count = (max_val - min_val) // bucket_size + 1buckets = [[] for _ in range(bucket_count)]for num in arr:index = (num - min_val) // bucket_sizebuckets[index].append(num)for i in range(bucket_count):buckets[i].sort()sorted_arr = []for bucket in buckets:sorted_arr.extend(bucket)return sorted_arr# ——————————————————————————————————————————————
# 生成测试数据
test_array = [random.randint(1, 10000) for _ in range(10000)]# 记录每种排序的时间
sorting_methods = [("冒泡排序", bubble_sort),("选择排序", selection_sort),("插入排序", insertion_sort),("快速排序", quick_sort),("归并排序", merge_sort),("桶排序", bucket_sort)
]# 比较排序结果
sorted_results = {}
for name, sort_func in sorting_methods:start_time = time.time()sorted_array = sort_func(test_array[:])end_time = time.time()sorted_results[name] = sorted_arrayprint(f"{name} 耗时: {end_time - start_time} 秒")# 比较排序结果是否一致
base_result = sorted_results[sorting_methods[0][0]]
is_consistent = True
for name, result in sorted_results.items():if result != base_result:is_consistent = Falseprint(f"{name} 的排序结果与基准排序结果不一致")if is_consistent:print("所有排序算法的排序结果一致")# 比较稳定性
# 稳定性定义: 排序后相同元素的相对顺序不变
# 生成包含重复元素的测试数据
test_stability_array = [5, 3, 8, 3, 6]
stable_sorts = []
unstable_sorts = []for name, sort_func in sorting_methods:original_array = test_stability_array[:]sorted_array = sort_func(original_array)original_indices = [i for i, x in enumerate(original_array) if x == 3]sorted_indices = [i for i, x in enumerate(sorted_array) if x == 3]if original_indices == sorted_indices:stable_sorts.append(name)else:unstable_sorts.append(name)print("\n稳定的排序算法: ", stable_sorts)
print("不稳定的排序算法: ", unstable_sorts)space_complexity = {"冒泡排序": "O(1)","选择排序": "O(1)","插入排序": "O(1)","快速排序": "O(log n) 平均, O(n) 最坏","归并排序": "O(n)","桶排序": "O(n + k) 其中 k 是桶的数量"
}print("\n空间复杂度:")
for name, complexity in space_complexity.items():print(f"{name}: {complexity}")

四、例题 P3226——宝藏排序Ⅱ


问题描述

注意:这道题于宝藏排序Ⅰ的区别仅是数据范围

在一个神秘的岛屿上,有一支探险队发现了一批宝藏,这批宝藏是以整数数组的形式存在的。每个宝藏上都标有一个数字,代表了其珍贵程度。然而,由于某种神奇的力量,这批宝藏的顺序被打乱了,探险队需要将宝藏按照珍贵程度进行排序,以便更好地研究和保护它们。作为探险队的一员,肖恩需要设计合适的排序算法来将宝藏按照珍贵程度进行从小到大排序。请你帮帮肖恩。

输入描述

输入第一行包括一个数字 n ,表示宝藏总共有 n 个。

输入的第二行包括 n 个数字,第 i 个数字 a[i] 表示第 i 个宝藏的珍贵程度。

数据保证 1≤n≤10^5,1≤a[i]≤10^9。

输出描述

输出 n 个数字,为对宝藏按照珍贵程度从小到大排序后的数组。


list.sort():是Python标准库中已经实现好的方法,它是基于优化的C语言代码实现的,内部实现经过了高度优化,以确保在各种情况下都能高效运行。

n = int(input())   
treasures = list(map(int, input().split()))# 使用Python内置的排序函数进行排序   
sorted_treasures = sorted(treasures)for treasure in sorted_treasures:print(treasure, end=" ")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/69160.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

洛谷 P4552 [Poetize6] IncDec Sequence C语言

P4552 [Poetize6] IncDec Sequence - 洛谷 | 计算机科学教育新生态 题目描述 给定一个长度为 n 的数列 a1​,a2​,…,an​&#xff0c;每次可以选择一个区间 [l,r]&#xff0c;使这个区间内的数都加 1 或者都减 1。 请问至少需要多少次操作才能使数列中的所有数都一样&#…

Vue Dom截图插件,截图转Base64 html2canvas

安装插件 npm install html2canvas --save插件使用 <template><div style"padding: 10px;"><div ref"imageTofile" class"box">发生什么事了</div><button click"toImage" style"margin: 10px;&quo…

88.[4]攻防世界 web php_rce

之前做过&#xff0c;回顾&#xff08;看了眼之前的wp,跟没做过一样&#xff09; 属于远程命令执行漏洞 在 PHP 里&#xff0c;system()、exec()、shell_exec()、反引号&#xff08;&#xff09;等都可用于执行系统命令。 直接访问index.php没效果 index.php?sindex/think\a…

数据结构-堆和PriorityQueue

1.堆&#xff08;Heap&#xff09; 1.1堆的概念 堆是一种非常重要的数据结构&#xff0c;通常被实现为一种特殊的完全二叉树 如果有一个关键码的集合K{k0,k1,k2,...,kn-1}&#xff0c;把它所有的元素按照完全二叉树的顺序存储在一个一维数组中&#xff0c;如果满足ki<k2i…

oracle 基础语法复习记录

Oracle SQL基础 因工作需要sql能力&#xff0c;需要重新把sql这块知识重新盘活&#xff0c;特此记录学习过程。 希望有新的发现。加油&#xff01;20250205 学习范围 学习SQL基础语法 掌握SELECT、INSERT、UPDATE、DELETE等基本操作。 熟悉WHERE、GROUP BY、ORDER BY、HAVIN…

【Rust自学】20.2. 最后的项目:多线程Web服务器

说句题外话&#xff0c;这篇文章非常要求Rust的各方面知识&#xff0c;最好看一下我的【Rust自学】专栏的所有内容。这篇文章也是整个专栏最长&#xff08;4762字&#xff09;的文章&#xff0c;需要多次阅读消化&#xff0c;最好点个收藏&#xff0c;免得刷不到了。 喜欢的话…

国产编辑器EverEdit - 工具栏说明

1 工具栏 1.1 应用场景 当用户想显示/隐藏界面的标签栏、工具栏、状态栏、主菜单等界面元素时&#xff0c;可以通过EverEdit的菜单选项进行设置。 1.2 使用方法 选择菜单查看 -> 工具栏&#xff0c;在工具栏的子菜单中选择勾选或去掉勾选对应的选项。 标签栏&#xff1…

虚幻UE5手机安卓Android Studio开发设置2025

一、下载Android Studio历史版本 步骤1&#xff1a;虚幻4.27、5.0、5.1、5.2官方要求Andrd Studio 4.0版本&#xff1b; 5.3、5.4、5.5官方要求的版本为Android Studio Flamingo | 2022.2.1 Patch 2 May 24, 2023 虚幻官网查看对应Andrd Studiob下载版本&#xff1a; https:/…

VLAN 基础 | 不同 VLAN 间通信实验

注&#xff1a;本文为 “ Vlan 间通信” 相关文章合辑。 英文引文&#xff0c;机翻未校。 图片清晰度限于原文图源状态。 未整理去重。 How to Establish Communications between VLANs? 如何在 VLAN 之间建立通信&#xff1f; Posted on November 20, 2015 by RouterSwi…

bat脚本实现自动化漏洞挖掘

bat脚本 BAT脚本是一种批处理文件&#xff0c;可以在Windows操作系统中自动执行一系列命令。它们可以简化许多日常任务&#xff0c;如文件操作、系统配置等。 bat脚本执行命令 echo off#下面写要执行的命令 httpx 自动存活探测 echo off httpx.exe -l url.txt -o 0.txt nuc…

堆的实现——堆的应用(堆排序)

文章目录 1.堆的实现2.堆的应用--堆排序 大家在学堆的时候&#xff0c;需要有二叉树的基础知识&#xff0c;大家可以看我的二叉树文章&#xff1a;二叉树 1.堆的实现 如果有⼀个关键码的集合 K {k0 , k1 , k2 , …&#xff0c;kn−1 } &#xff0c;把它的所有元素按完全⼆叉树…

edu小程序挖掘严重支付逻辑漏洞

edu小程序挖掘严重支付逻辑漏洞 一、敏感信息泄露 打开购电小程序 这里需要输入姓名和学号&#xff0c;直接搜索引擎搜索即可得到&#xff0c;这就不用多说了&#xff0c;但是这里的手机号可以任意输入&#xff0c;只要用户没有绑定手机号这里我们输入自己的手机号抓包直接进…

FRP通过公网IP实现内网穿透

FRP通过公网IP实现内网穿透 一、简介二、安装服务端1、下载2、安装FRP3、使用 systemd 命令管理 frps 服务4、设置 frps 开机自启动 三、安装客户端1、下载2、安装FRP3、使用 systemd 命令管理 frpc 服务4、设置 frpc 开机自启动 四、访问仪表盘 一、简介 frp 是一款高性能的反…

K8S学习笔记-------1.安装部署K8S集群环境

1.修改为root权限 #sudo su 2.修改主机名 #hostnamectl set-hostname k8s-master01 3.查看网络地址 sudo nano /etc/netplan/01-netcfg.yaml4.使网络配置修改生效 sudo netplan apply5.修改UUID&#xff08;某些虚拟机系统&#xff0c;需要设置才能生成UUID&#xff09;#…

go运算符

内置运算符 算术运算符关系运算符逻辑运算符位运算符赋值运算符 算术运算符 注意&#xff1a; &#xff08;自增&#xff09;和–&#xff08;自减&#xff09;在 Go 语言中是单独的语句&#xff0c;并不是运算符 package mainimport "fmt"func main() {fmt.Printl…

【贪心算法篇】:“贪心”之旅--算法练习题中的智慧与策略(一)

✨感谢您阅读本篇文章&#xff0c;文章内容是个人学习笔记的整理&#xff0c;如果哪里有误的话还请您指正噢✨ ✨ 个人主页&#xff1a;余辉zmh–CSDN博客 ✨ 文章所属专栏&#xff1a;贪心算法篇–CSDN博客 文章目录 一.贪心算法1.什么是贪心算法2.贪心算法的特点 二.例题1.柠…

一款wordpress AI免费插件自动内容生成+前端AI交互+文章批量采集

一款wordpressAI自动内容生成前端AI会话窗口交互文章批量采集免费插件 1. SEO优化文章生成 关键词驱动的内容生成&#xff1a;用户可以输入关键词或长尾关键词&#xff0c;插件会根据这些关键词生成高质量的SEO优化文章。文章结构清晰&#xff0c;语言自然流畅&#xff0c;符合…

Linux03——常见的操作命令

root用户以及权限 Linux系统的超级管理员用户是&#xff1a;root用户 su命令 可以切换用户&#xff0c;语法&#xff1a;su [-] [用户名]- 表示切换后加载环境变量&#xff0c;建议带上用户可以省略&#xff0c;省略默认切换到root su命令是用于账户切换的系统命令&#xff…

使用 Ollama 在 Windows 环境部署 DeepSeek 大模型实战指南

文章目录 前言Ollama核心特性 实战步骤安装 Ollama验证安装结果部署 DeepSeek 模型拉取模型启动模型 交互体验命令行对话调用 REST API 总结个人简介 前言 近年来&#xff0c;大语言模型&#xff08;LLM&#xff09;的应用逐渐成为技术热点&#xff0c;而 DeepSeek 作为国产开…

关于大数据

在大数据背景下存在的问题&#xff1a; 非结构化、半结构化数据&#xff1a;NoSQL数据库只负责存储&#xff1b;程序处理时涉及到数据移动&#xff0c;速度慢 是否存在一套整体解决方案&#xff1f; 可以存储并处理海量结构化、半结构化、非结构化数据 处理海量数据的速…