25寒假算法刷题 | Day1 | LeetCode 240. 搜索二维矩阵 II,148. 排序链表

目录

  • 240. 搜索二维矩阵 II
    • 题目描述
    • 题解
  • 148. 排序链表
    • 题目描述
    • 题解

240. 搜索二维矩阵 II

点此跳转题目链接

题目描述

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

  • 每行的元素从左到右升序排列。
  • 每列的元素从上到下升序排列。

示例 1:

在这里插入图片描述

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true

示例 2:

在这里插入图片描述

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= n, m <= 300
  • -109 <= matrix[i][j] <= 109
  • 每行的所有元素从左到右升序排列
  • 每列的所有元素从上到下升序排列
  • -109 <= target <= 109

题解

暴力算法直接遍历整个矩阵,时间复杂度为 O ( m n ) O(mn) O(mn) m 、 n m、n mn 分别为矩阵的行、列数。

由于题中矩阵在行和列上的元素都是升序的,所以想到可以从上到下逐行利用二分查找解决:

class Solution {
public:int binarySearch(const vector<int>& arr, int target) {int left = 0;int right = arr.size() - 1;while (left <= right) {int mid = left + (right - left) / 2;if (arr[mid] < target) {left = mid + 1;} else if (arr[mid] > target) {right = mid - 1;} else {return mid;}}return -1;}bool searchMatrix(vector<vector<int>>& matrix, int target) {if (matrix.empty()) {return false;}// 逐行使用二分法查找targetfor (const vector<int>& line : matrix) {if (binarySearch(line, target) != -1) {return true;}}return false;}
};

行内 n n n 个元素做二分查找的时间复杂度为 O ( l o g n ) O(logn) O(logn) ,共 m m m 行,故时间复杂度为 O ( m l o g n ) O(mlogn) O(mlogn)

不过上面两种方法似乎都过于直白简单了,考虑到这个题目带的是“中等”tag,肯定还有更高效的算法:

🔗 以下内容来自 LeetCode官方题解

我们可以从矩阵 matrix 的右上角 (0,n−1) 进行搜索。在每一步的搜索过程中,如果我们位于位置 (x,y) ,那么我们希望在以 matrix 的左下角为左下角、以 (x,y) 为右上角的矩阵中进行搜索,即行的范围为 [x,m−1] ,列的范围为 [0,y]

  • 如果 matrix[x,y]=target ,说明搜索完成
  • 如果 matrix[x,y]>target ,由于每一列的元素都是升序排列的,那么在当前的搜索矩阵中,所有位于第 y 列的元素都是严格大于 target 的,因此我们可以将它们全部忽略,即将 y 减少 1
  • 如果 matrix[x,y]<target ,由于每一行的元素都是升序排列的,那么在当前的搜索矩阵中,所有位于第 x 行的元素都是严格小于 target 的,因此我们可以将它们全部忽略,即将 x 增加 1。

在搜索的过程中,如果我们超出了矩阵的边界,那么说明矩阵中不存在 target 。代码实现如下:

class Solution {
public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int x = 0;int y = matrix[0].size() - 1;while (x < matrix.size() && y >= 0) {if (matrix[x][y] < target) {x++;} else if (matrix[x][y] > target) {y--;} else {return true;}}return false;}
};

时间复杂度: O ( m + n ) O(m+n) O(m+n) 。在搜索的过程中,如果我们没有找到 target ,那么我们要么将 y 减少 1,要么将 x 增加 1。由于 (x,y) 的初始值分别为 (0,n−1) ,因此 y 最多能被减少 n 次, x 最多能被增加 m 次,总搜索次数为 m+n 。在这之后, xy 就会超出矩阵的边界。


148. 排序链表

点此跳转题目链接

题目描述

给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表

示例 1:

在这里插入图片描述

输入:head = [4,2,1,3]
输出:[1,2,3,4]

示例 2:

在这里插入图片描述

输入:head = [-1,5,3,4,0]
输出:[-1,0,3,4,5]

示例 3:

输入:head = []
输出:[]

提示:

  • 链表中节点的数目在范围 [0, 5 * 104]
  • -105 <= Node.val <= 105

进阶: 你可以在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序吗?

题解

暴力解法无需多言,遍历一遍链表获取全部元素、排序后重新整一个新链表即可:

struct ListNode
{int val;ListNode *next;ListNode() : val(0), next(nullptr) {}ListNode(int x) : val(x), next(nullptr) {}ListNode(int x, ListNode *next) : val(x), next(next) {}
};class Solution {
public:ListNode* sortList(ListNode* head) {vector<int> elements;while (head){elements.push_back(head->val);head = head->next;}sort(elements.begin(), elements.end());ListNode *dummyHead = new ListNode();ListNode *cur = dummyHead;for (int element : elements) {cur->next = new ListNode(element);cur = cur->next;}return dummyHead->next;}
};

上述算法时间复杂度为 sort() O ( n log ⁡ n ) O(n\log{n}) O(nlogn) ,空间复杂度为 O ( n ) O(n) O(n) ——因为新建了一个链表。 直接看看进阶要求:时间复杂度为 O ( n log ⁡ n ) O(n\log{n}) O(nlogn) ,空间复杂度为常数级。

考虑算法题中常用的高效排序算法——归并排序,有:

class Solution {
public:ListNode *merge(ListNode *L, ListNode *R) {ListNode dummyHead;ListNode *cur = &dummyHead;while (L && R) {if (L->val < R->val) {cur->next = L;L = L->next;} else {cur->next = R;R = R->next;}cur = cur->next;}cur->next = L ? L : R;return dummyHead.next;}ListNode *sortList(ListNode *head, ListNode *tail) {if (!head || head == tail) return head;// 快慢指针找到链表中点ListNode *slow = head, *fast = head;while (fast != tail && fast->next != tail) {slow = slow->next;fast = fast->next->next;}ListNode *mid = slow->next;slow->next = nullptr;  // 断开链表return merge(sortList(head, slow), sortList(mid, tail));}ListNode *sortList(ListNode *head) { return sortList(head, nullptr); }
};

上述算法时间复杂度为 O ( n log ⁡ n ) O(n\log{n}) O(nlogn) ,即归并排序的时间复杂度。空间复杂度取决于递归调用的栈空间,为 O ( log ⁡ n ) O(\log{n}) O(logn) ,还是没到最佳的常数级别。为此,需要采用“自底向上”的归并排序实现 O ( 1 ) O(1) O(1) 的空间复杂度:

🔗 以下内容参考 LeetCode官方题解

首先求得链表的长度 length ,然后将链表拆分成子链表进行合并。具体做法如下:

  • subLength 表示每次需要排序的子链表的长度,初始时 subLength=1
  • 每次将链表拆分成若干个长度为 subLength 的子链表(最后一个子链表的长度可以小于 subLength ),按照每两个子链表一组进行合并,合并后即可得到若干个长度为 subLength×2 的有序子链表(最后一个子链表的长度可以小于 subLength×2 )。合并两个子链表仍然使用之前用过的归并算法。
  • subLength 的值加倍,重复第 2 步,对更长的有序子链表进行合并操作,直到有序子链表的长度大于或等于 length ,整个链表排序完毕。

通过数学归纳法易证最后得到的链表是有序的(每次合并用到的子链表是有序的,合并后的也是有序的)。

class Solution {
public:ListNode *merge(ListNode *L, ListNode *R) {ListNode dummyHead;ListNode *cur = &dummyHead;while (L && R) {if (L->val < R->val) {cur->next = L;L = L->next;} else {cur->next = R;R = R->next;}cur = cur->next;}cur->next = L ? L : R;return dummyHead.next;}ListNode *sortList(ListNode *head) {if (!head) {return nullptr;}// 获取链表长度int length = 0;ListNode *cur = head;while (cur != nullptr) {length++;cur = cur->next;}// 自底向上,两两合并长度为subLength的子链表ListNode *dummyHead = new ListNode(0, head);for (int subLength = 1; subLength < length; subLength <<= 1) {ListNode *prev = dummyHead;cur = prev->next;while (cur != nullptr) {// 获取第一个子链表ListNode *head1 = cur;for (int i = 1; i < subLength && cur->next != nullptr; ++i) {cur = cur->next;}// 获取第二个子链表ListNode *head2 = cur->next;cur->next = nullptr;  // 断开第一个子链表结尾cur = head2;for (int i = 1; i < subLength && cur && cur->next; ++i) {cur = cur->next;}// 预存第三个子链表(即下一轮的第一个子链表)的头节点// 即第二个子链表结尾节点的next节点ListNode *nextHead = nullptr;if (cur != nullptr) {nextHead = cur->next;cur->next = nullptr;  // 断开第二个子链表结尾}// 合并第一、二个子链表ListNode *merged = merge(head1, head2);// 更新prev、cur指针prev->next = merged;while (prev->next != nullptr) {prev = prev->next;}cur = nextHead;}}return dummyHead->next;}
};

该算法时间复杂度为 O ( n log ⁡ n ) O(n \log{n}) O(nlogn) ,空间复杂度为 O ( 1 ) O(1) O(1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/68959.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

014-STM32单片机实现矩阵薄膜键盘设计

1.功能说明 本设计主要是利用STM32驱动矩阵薄膜键盘&#xff0c;当按下按键后OLED显示屏上会对应显示当前的按键键值&#xff0c;可以将此设计扩展做成电子秤、超市收银机、计算器等需要多个按键操作的单片机应用。 2.硬件接线 模块管脚STM32单片机管脚矩阵键盘行1PA0矩阵键盘…

将ollama迁移到其他盘(eg:F盘)

文章目录 1.迁移ollama的安装目录2.修改环境变量3.验证 背景&#xff1a;在windows操作系统中进行操作 相关阅读 &#xff1a;本地部署deepseek模型步骤 1.迁移ollama的安装目录 因为ollama默认安装在C盘&#xff0c;所以只能安装好之后再进行手动迁移位置。 # 1.迁移Ollama可…

CMake的QML项目中使用资源文件

Qt6.5的QML项目中&#xff0c;我发现QML引用资源文件并不像QtWidgets项目那样直接。 在QtWidgets的项目中&#xff0c;我们一般是创建.qrc​资源文件&#xff0c;然后创建前缀/new/prefix​&#xff0c;再往该前缀中添加一个图片文件&#xff0c;比如&#xff1a;test.png​。…

SAP HCM 回溯分析

最近总有人问回溯问题&#xff0c;今天把12年总结的笔记在这共享下&#xff1a; 12年开这个图的时候总是不明白是什么原理&#xff0c;教程看N次&#xff0c;网上资料找一大堆&#xff0c;就是不明白原理&#xff0c;后来为搞明白逻辑&#xff0c;按照教材的数据一样做&#xf…

强化学习笔记(5)——PPO

PPO视频课程来源 首先理解采样期望的转换 变量x在p(x)分布下&#xff0c;函数f(x)的期望 等于f(x)乘以对应出现概率p(x)的累加 经过转换后变成 x在q(x)分布下&#xff0c;f(x)*p(x)/q(x) 的期望。 起因是&#xff1a;求最大化回报的期望&#xff0c;所以对ceta求梯度 具体举例…

Linux第105步_基于SiI9022A芯片的RGB转HDMI实验

SiI9022A是一款HDMI传输芯片&#xff0c;可以将“音视频接口”转换为HDMI或者DVI格式&#xff0c;是一个视频转换芯片。本实验基于linux的驱动程序设计。 SiI9022A支持输入视频格式有&#xff1a;xvYCC、BTA-T1004、ITU-R.656&#xff0c;内置DE发生器&#xff0c;支持SYNC格式…

ANSYS Workbench打开cdb文件

背景&#xff1a; 前面一篇文章已经说过ANSYS Mechanical APDL打开cdb文件-CSDN博客&#xff0c;经典ANSYS界面可以打开HyperMesh中生成的cdb文件&#xff0c;如果是workbench&#xff0c;那么该如何操作&#xff1f; 方法&#xff1a; 首先打开ANSYS的workbench软件&#xf…

计算图 Compute Graph 和自动求导 Autograd | PyTorch 深度学习实战

前一篇文章&#xff0c;Tensor 基本操作5 device 管理&#xff0c;使用 GPU 设备 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started PyTorch 计算图和 Autograd 微积分之于机器学习Computational Graphs 计算图Autograd…

探秘Linux IO虚拟化:virtio的奇幻之旅

在当今数字化时代&#xff0c;虚拟化技术早已成为推动计算机领域发展的重要力量。想象一下&#xff0c;一台物理主机上能同时运行多个相互隔离的虚拟机&#xff0c;每个虚拟机都仿佛拥有自己独立的硬件资源&#xff0c;这一切是如何实现的呢&#xff1f;今天&#xff0c;就让我…

Mac本地部署DeekSeek-R1下载太慢怎么办?

Ubuntu 24 本地安装DeekSeek-R1 在命令行先安装ollama curl -fsSL https://ollama.com/install.sh | sh 下载太慢&#xff0c;使用讯雷&#xff0c;mac版下载链接 https://ollama.com/download/Ollama-darwin.zip 进入网站 deepseek-r1:8b&#xff0c;看内存大小4G就8B模型 …

基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 3.核心程序 .…

基于脉冲响应不变法的IIR滤波器设计与MATLAB实现

一、设计原理 脉冲响应不变法是一种将模拟滤波器转换为数字滤波器的经典方法。其核心思想是通过对模拟滤波器的冲激响应进行等间隔采样来获得数字滤波器的单位脉冲响应。 设计步骤&#xff1a; 确定数字滤波器性能指标 将数字指标转换为等效的模拟滤波器指标 设计对应的模拟…

Java设计模式:行为型模式→状态模式

Java 状态模式详解 1. 定义 状态模式&#xff08;State Pattern&#xff09;是一种行为型设计模式&#xff0c;它允许对象在内部状态改变时改变其行为。状态模式通过将状态需要的行为封装在不同的状态类中&#xff0c;实现对象行为的动态改变。该模式的核心思想是分离不同状态…

游戏引擎 Unity - Unity 下载与安装

Unity Unity 首次发布于 2005 年&#xff0c;属于 Unity Technologies Unity 使用的开发技术有&#xff1a;C# Unity 的适用平台&#xff1a;PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域&#xff1a;开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…

Vue指令v-on

目录 一、Vue中的v-on指令是什么&#xff1f;二、v-on指令的简写三、v-on指令的使用 一、Vue中的v-on指令是什么&#xff1f; v-on指令的作用是&#xff1a;为元素绑定事件。 二、v-on指令的简写 “v-on&#xff1a;“指令可以简写为”” 三、v-on指令的使用 1、v-on指令绑…

C++游戏开发实战:从引擎架构到物理碰撞

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 1. 引言 C 是游戏开发中最受欢迎的编程语言之一&#xff0c;因其高性能、低延迟和强大的底层控制能力&#xff0c;被广泛用于游戏…

【贪心算法篇】:“贪心”之旅--算法练习题中的智慧与策略(二)

✨感谢您阅读本篇文章&#xff0c;文章内容是个人学习笔记的整理&#xff0c;如果哪里有误的话还请您指正噢✨ ✨ 个人主页&#xff1a;余辉zmh–CSDN博客 ✨ 文章所属专栏&#xff1a;贪心算法篇–CSDN博客 文章目录 前言例题1.买卖股票的最佳时机2.买卖股票的最佳时机23.k次取…

unity学习25:用 transform 进行旋转和移动,简单的太阳地球月亮模型,以及父子级关系

目录 备注内容 1游戏物体的父子级关系 1.1 父子物体 1.2 坐标关系 1.3 父子物体实际是用 每个gameobject的tranform来关联的 2 获取gameObject的静态数据 2.1 具体命令 2.2 具体代码 2.3 输出结果 3 获取gameObject 的方向 3.1 游戏里默认的3个方向 3.2 获取方向代…

基于深度学习的视觉检测小项目(十七) 用户管理后台的编程

完成了用户管理功能的阶段。下一阶段进入AI功能相关。所有的资源见文章链接。 补充完后台代码的用户管理界面代码&#xff1a; import sqlite3from PySide6.QtCore import Slot from PySide6.QtWidgets import QDialog, QMessageBoxfrom . import user_manage # 导入使用ui…

Vue指令v-html

目录 一、Vue中的v-html指令是什么&#xff1f;二、v-html指令与v-text指令的区别&#xff1f; 一、Vue中的v-html指令是什么&#xff1f; v-html指令的作用是&#xff1a;设置元素的innerHTML&#xff0c;内容中有html结构会被解析为标签。 二、v-html指令与v-text指令的区别…