本系列文章致力于实现“手搓有限元,干翻Ansys的目标”,基本框架为前端显示使用QT实现交互,后端计算采用Visual Studio C++。
目录
Matrix类
1、public function
1.1、构造函数与析构函数
1.2、获取矩阵数值
1.3、设置矩阵
1.4、矩阵转置、单位化
1.5、矩阵的删除与替换
1.6、矩阵初等变换
1.7、矩阵加法
1.8、矩阵乘法
1.9、行列式相关操作
1.10、矩阵求逆
2、private variable
3、全部源码
Matrix类
矩阵基本类,用于有限元矩阵计算。
1、public function
公共成员函数,调用可实现基本运算
1.1、构造函数与析构函数
构造函数用来初始化矩阵,析构函数用来释放内存。
Matrix.h声明文件:
/*函数名称: 无参构造函数*/Matrix();/*函数名称: 矩阵有参构造函数,初始化为row行、col列的0矩阵row: 矩阵行数col: 矩阵列数*/Matrix(int row, int col);/*函数名称: 矩阵有参构造函数,初始化为row行、col列、数值为mat的矩阵row: 矩阵行数col: 矩阵列数*mat: 矩阵数值一维数组*/Matrix(int row, int col, double* mat);/*函数名称: 深拷贝构造函数mat: 需要复制的矩阵*/Matrix(const Matrix& mat);/*函数名称: 析构函数*/~Matrix();
Matrix.cpp函数实现文件:
Matrix::Matrix()
{}//初始化矩阵 默认值为0
Matrix::Matrix(int row, int col)
{this->m_Row = row;this->m_Col = col;//开辟内存this->m_Matrix = new double* [row];for (int i = 0; i < row; i++){this->m_Matrix[i] = new double[col] {0.0};}}//初始化矩阵 设定数值
Matrix::Matrix(int row, int col, double *mat)
{this->m_Row = row;this->m_Col = col;//开辟内存this->m_Matrix = new double* [row];for (int i = 0; i < row; i++){this->m_Matrix[i] = new double[col] {0.0};}//矩阵赋值for(int i = 0; i<row; i++){for (int j = 0; j < col; j++){this->m_Matrix[i][j] = mat[i * col + j];}}
}//深拷贝
Matrix::Matrix(const Matrix& mat)
{//行列传递this->m_Row = mat.m_Row;this->m_Col = mat.m_Col;//矩阵深拷贝this->m_Matrix = new double* [this->m_Row];for (int i = 0; i < this->m_Row; i++){this->m_Matrix[i] = new double[this->m_Col];memcpy(this->m_Matrix[i], mat.m_Matrix[i], sizeof(double) * this->m_Col);}
}//析构函数
Matrix::~Matrix()
{//释放矩阵每一行for (int i = 0; i < this->m_Row; i++){if (this->m_Matrix[i] != NULL){delete[]this->m_Matrix[i];this->m_Matrix[i] = NULL;}}//释放矩阵顶点if (this->m_Matrix != NULL){delete[]this->m_Matrix;this->m_Matrix = NULL;}
}
1.2、获取矩阵数值
可以获取矩阵指定位置数值、打印矩阵。
Matrix.h声明文件:
//*******************获取矩阵*****************///*函数名称: 获取矩阵的第row行、第col列元素数值row: 矩阵行数col: 矩阵列数*/double GetMatrixEle(int row, int col);/*函数名称: 打印矩阵*/void PrintMat();
Matrix.cpp函数实现文件:
//获取矩阵某个元素 某行某列
double Matrix::GetMatrixEle(int row, int col)
{if (row >= this->m_Row){std::cout << "Error: <GetMatrixEle> Input row >= m_Row" << std::endl;return 0.0;}else if (col >= this->m_Col){std::cout << "Error: <GetMatrixEle> Input col >= m_Col" << std::endl;return 0.0;}else{return this->m_Matrix[row][col];}
}//矩阵输出
void Matrix::PrintMat()
{for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){std::cout.setf(std::ios::scientific); //科学计数法表示std::cout << this->m_Matrix[i][j] << "\t";}std::cout << std::endl;}std::cout << std::endl;
}
测试验证:
测试代码:
#include "Matrix.h"
int main()
{//定义矩阵数值double tempValue[9] = {1.0, 2.0, 3.0,4.0, 5.0, 6.0,7.0, 8.0, 0.0};//创建矩阵Matrix* tempMatrix = new Matrix(3, 3, tempValue);//打印矩阵tempMatrix->PrintMat();system("pause");return 0;
}
应用输出:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00请按任意键继续. . .
1.3、设置矩阵
可进行设置矩阵指定位置数值,以及深拷贝矩阵。
Matrix.h声明文件:
/*函数名称: 设置矩阵第row行、第col列数值row: 矩阵行数col: 矩阵列数value: 设置的矩阵数值*/void SetMatrixEle(int row, int col, double value);/*函数名称: 深拷贝矩阵mat: 需要复制的矩阵*/Matrix CopyMat(const Matrix mat);
Matrix.cpp函数实现文件:
//*******************设置矩阵*****************//
void Matrix::SetMatrixEle(int row, int col, double value)
{if (row >= this->m_Row){std::cout << "Error: <SetMatrixEle> Input row >= m_Row" << std::endl;return;}else if (col >= this->m_Col){std::cout << "Error: <SetMatrixEle> Input col >= m_Col" << std::endl;return;}else{this->m_Matrix[row][col] = value;return;}
}//深拷贝矩阵
Matrix Matrix::CopyMat(const Matrix mat)
{//行列传递this->m_Row = mat.m_Row;this->m_Col = mat.m_Col;//矩阵深拷贝this->m_Matrix = new double* [this->m_Row];for (int i = 0; i < this->m_Row; i++){this->m_Matrix[i] = new double[this->m_Col];memcpy(this->m_Matrix[i], mat.m_Matrix[i], sizeof(double) * this->m_Col);}return *this;
}
测试验证:
测试代码:
int main()
{//定义矩阵数值double tempValue[9] = {1.0, 2.0, 3.0,4.0, 5.0, 6.0,7.0, 8.0, 0.0};//创建矩阵Matrix* tempMatrix = new Matrix(3, 3, tempValue);//打印矩阵std::cout << "数值更改前:" << std::endl;tempMatrix->PrintMat();//更改特定值tempMatrix->SetMatrixEle(1, 1, 10.0);//打印矩阵std::cout << "数值更改后:" << std::endl;tempMatrix->PrintMat();system("pause");return 0;
}
应用输出:
数值更改前:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00数值更改后:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 1.000000e+01 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00请按任意键继续. . .
1.4、矩阵转置、单位化
可进行矩阵转置,单位化,注意返回值类型为自身的引用,可实现链式编程。
Matrix.h声明文件:
/*函数名称: 矩阵转置,返回的是自身引用,可链式调用*/Matrix& Transpose();/*函数名称: 等维度的单位矩阵,前提是方阵*/Matrix& Uint();
Matrix.cpp函数实现文件:
//矩阵转置
Matrix& Matrix::Transpose()
{Matrix* resMat = new Matrix(this->m_Col, this->m_Row);for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){resMat->m_Matrix[j][i] = this->m_Matrix[i][j];}}return *resMat;
}//求等长度单位矩阵
Matrix& Matrix::Uint()
{//矩阵是否为方阵if (this->m_Col != this->m_Row){std::cout << "Error: <Uint> Row != Col" << std::endl;Matrix* resMat = new Matrix(this->m_Row, this->m_Row);return *resMat;}else{//单位矩阵初始化Matrix* resMat = new Matrix(this->m_Row, this->m_Col);//单位矩阵生成for (int i = 0; i < this->m_Row; i++){resMat->m_Matrix[i][i] = 1.0;}return *resMat;}
}
测试验证:
测试代码:
int main()
{//定义矩阵数值double tempValue[9] = {1.0, 2.0, 3.0,4.0, 5.0, 6.0,7.0, 8.0, 0.0};//创建矩阵Matrix* tempMatrix = new Matrix(3, 3, tempValue);//打印矩阵std::cout << "数值转置前:" << std::endl;tempMatrix->PrintMat();//打印矩阵(注意可链式编程)std::cout << "数值转置后:" << std::endl;tempMatrix->Transpose().PrintMat();system("pause");return 0;
}
应用输出:
数值转置前:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00数值转置后:
1.000000e+00 4.000000e+00 7.000000e+00
2.000000e+00 5.000000e+00 8.000000e+00
3.000000e+00 6.000000e+00 0.000000e+00请按任意键继续. . .
1.5、矩阵的删除与替换
可进行矩阵指定行、列的删除与替换,注意返回值类型为自身的引用,可实现链式编程。
Matrix.h声明文件:
/*函数名称: 剔除矩阵中以index为行标和列标的行和列,num代表index的大小*index: 矩阵中的行号与列号一维数组num: index动态数组长度*/Matrix& DeleteMat(int *index, int num);/*函数名称: 剔除矩阵中以index为行标和列标的行和列,num代表index的大小*index: 矩阵中的行号与列号一维动态数组num: index动态数组长度*/Matrix& DeleteMat(std::vector<int> index, int num);/*函数名称: 剔除矩阵中以index为行标的行,num代表index的大小*index: 矩阵中的行号一维数组num: index动态数组长度*/Matrix& DeleteRow(int* index, int num);/*函数名称: 剔除矩阵中以index为行标的行,num代表index的大小*index: 矩阵中的行号一维动态数组num: index动态数组长度*/Matrix& DeleteRow(std::vector<int> index, int num);/*函数名称: 剔除矩阵中以index为列标的列,num代表index的大小*index: 矩阵中的列号一维数组num: index动态数组长度*/Matrix& DeleteCol(int* index, int num);/*函数名称: 剔除矩阵中以index为列标的列,num代表index的大小*index: 矩阵中的列号一维动态数组num: index动态数组长度*/Matrix& DeleteCol(std::vector<int> index, int num);//******************矩阵的替换****************///*函数名称: 替换矩阵中行标和列标为 index中的行与列,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的行标和列标的一维数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceMat(int* index, int num, Matrix& mat);/*函数名称: 替换矩阵中行标和列标为 index中的行与列,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的行标和列标的一维动态数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceMat(std::vector<int> index, int num, Matrix& mat);/*函数名称: 替换矩阵中行标为 index中的行,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的行标的一维数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceRow(int* index, int num, Matrix& mat);/*函数名称: 替换矩阵中行标为 index中的行,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的行标的一动态维数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceRow(std::vector<int> index, int num, Matrix& mat);/*函数名称: 替换矩阵中列标为 index中的列,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的列标的一维数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceCol(int* index, int num, Matrix& mat);/*函数名称: 替换矩阵中列标为 index中的列,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的列标的一维动态数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceCol(std::vector<int> index, int num, Matrix& mat);
Matrix.cpp函数实现文件:
//****************矩阵保留与剔除**************//
//剔除矩阵的 index中的行与列,num代表index的大小
Matrix& Matrix::DeleteMat(int* index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row - num, this->m_Col - num);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}else if (index[i] >= this->m_Col){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num-1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[recIndex[iRow]][recIndex[iCol]];}}return *resMat;}Matrix& Matrix::DeleteMat(std::vector<int> index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row - num, this->m_Col - num);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}else if (index[i] >= this->m_Col){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num - 1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[recIndex[iRow]][recIndex[iCol]];}}return *resMat;
}//剔除矩阵的 index中的行,num代表index的大小
Matrix& Matrix::DeleteRow(int* index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row - num, this->m_Col);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num - 1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[recIndex[iRow]][iCol];}}return *resMat;
}Matrix& Matrix::DeleteRow(std::vector<int> index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row - num, this->m_Col);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num - 1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[recIndex[iRow]][iCol];}}return *resMat;
}Matrix& Matrix::DeleteCol(int* index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row, this->m_Col - num);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num - 1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[iRow][recIndex[iCol]];}}return *resMat;
}Matrix& Matrix::DeleteCol(std::vector<int> index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row, this->m_Col - num);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num - 1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[iRow][recIndex[iCol]];}}return *resMat;
}//******************矩阵的替换****************//
//替换矩阵中的行和列 index中的行与列,num代表index的大小
Matrix& Matrix::ReplaceMat(int* index, int num, Matrix& mat)
{//错误判定 方阵if (this->m_Row != this->m_Col){std::cout << "Error: <ReplaceMat> this m_Col != m_Row" << std::endl;return *this;}//检验插入矩阵为方阵if (mat.m_Row != mat.m_Col){std::cout << "Error: <ReplaceMat> mat m_Col != m_Row" << std::endl;return *this;}//检验插入矩阵大小与num保持一致if (mat.m_Col != num){std::cout << "Error: <ReplaceMat> num != mat.m_Col" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <ReplaceMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}else if (index[i] >= this->m_Col){std::cout << "Error: <ReplaceMat> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < num; iRow++){for (int iCol = 0; iCol < num; iCol++){resMat->m_Matrix[index[iRow]][index[iCol]] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}Matrix& Matrix::ReplaceMat(std::vector<int> index, int num, Matrix& mat)
{//错误判定 方阵if (this->m_Row != this->m_Col){std::cout << "Error: <ReplaceMat> this m_Col != m_Row" << std::endl;return *this;}//检验插入矩阵为方阵if (mat.m_Row != mat.m_Col){std::cout << "Error: <ReplaceMat> mat m_Col != m_Row" << std::endl;return *this;}//检验插入矩阵大小与num保持一致if (mat.m_Col != num){std::cout << "Error: <ReplaceMat> num != mat.m_Col" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <ReplaceMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}else if (index[i] >= this->m_Col){std::cout << "Error: <ReplaceMat> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < num; iRow++){for (int iCol = 0; iCol < num; iCol++){resMat->m_Matrix[index[iRow]][index[iCol]] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}//替换矩阵中的行 index中的行,num代表index的大小, mat是需要替换的矩阵
Matrix& Matrix::ReplaceRow(int* index, int num, Matrix& mat)
{//检验插入矩阵大小与num保持一致if (mat.m_Row != num){std::cout << "Error: <ReplaceRow> num != mat.m_Row" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <ReplaceRow> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//当前矩阵列数应与mat列数一致if (this->m_Col != mat.m_Col){std::cout << "Error: <ReplaceRow> this->m_Col != mat.m_Col" << std::endl;return *this;}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < num; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[index[iRow]][iCol] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}Matrix& Matrix::ReplaceRow(std::vector<int> index, int num, Matrix& mat)
{//检验插入矩阵大小与num保持一致if (mat.m_Row != num){std::cout << "Error: <ReplaceRow> num != mat.m_Row" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <ReplaceRow> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//当前矩阵列数应与mat列数一致if (this->m_Col != mat.m_Col){std::cout << "Error: <ReplaceRow> this->m_Col != mat.m_Col" << std::endl;return *this;}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < num; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[index[iRow]][iCol] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}//替换矩阵中的列 index中的列,num代表index的大小, mat是需要替换的矩阵
Matrix& Matrix::ReplaceCol(int* index, int num, Matrix& mat)
{//检验插入矩阵大小与num保持一致if (mat.m_Col != num){std::cout << "Error: <ReplaceCol> mat.m_Col != num" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Col){std::cout << "Error: <ReplaceCol> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//当前矩阵行数应与mat行数一致if (this->m_Row != mat.m_Row){std::cout << "Error: <ReplaceCol> this->m_Row != mat.m_Row" << std::endl;return *this;}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < num; iCol++){resMat->m_Matrix[iRow][index[iCol]] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}Matrix& Matrix::ReplaceCol(std::vector<int> index, int num, Matrix& mat)
{//检验插入矩阵大小与num保持一致if (mat.m_Col != num){std::cout << "Error: <ReplaceCol> mat.m_Col != num" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Col){std::cout << "Error: <ReplaceCol> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//当前矩阵行数应与mat行数一致if (this->m_Row != mat.m_Row){std::cout << "Error: <ReplaceCol> this->m_Row != mat.m_Row" << std::endl;return *this;}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < num; iCol++){resMat->m_Matrix[iRow][index[iCol]] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}
测试验证:
测试代码:
int main()
{//定义矩阵数值double tempValue[9] = {1.0, 2.0, 3.0,4.0, 5.0, 6.0,7.0, 8.0, 0.0};//替换数值double replaceValue[3] = {1.42, 2.54, 9.65};//创建矩阵Matrix* tempMatrix = new Matrix(3, 3, tempValue);Matrix* tempReplaceMatrix = new Matrix(1, 3, replaceValue);int replaceCol[1] = {2};//打印矩阵std::cout << "数值第3行替换前:" << std::endl;tempMatrix->PrintMat();//打印矩阵(注意可链式编程)std::cout << "数值第3行替换后:" << std::endl;tempMatrix->ReplaceRow(replaceCol, 1, *tempReplaceMatrix).PrintMat();//打印矩阵std::cout << "数值第3行删除前:" << std::endl;tempMatrix->PrintMat();//打印矩阵(注意可链式编程)std::cout << "数值第3行删除后:" << std::endl;tempMatrix->DeleteRow(replaceCol, 1).PrintMat();system("pause");return 0;
}
应用输出:
数值第3行替换前:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00数值第3行替换后:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
1.420000e+00 2.540000e+00 9.650000e+00数值第3行删除前:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00数值第3行删除后:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00请按任意键继续. . .
1.6、矩阵初等变换
可实现矩阵的初等变化,注意返回值类型为自身的引用,可实现链式编程。
Matrix.h声明文件:
//*****************矩阵初等变化***************///*函数名称: 交换矩阵中行标为row0与row1的元素row0: 矩阵行标0row1: 矩阵行标1*/Matrix& SwapRow(int row0, int row1);/*函数名称: 交换矩阵中列标为col0与col1的元素col0: 矩阵列标0col1: 矩阵列标1*/Matrix& SwapCol(int col0, int col1);/*函数名称: 矩阵行加法 rowLocal = rowLocal + rate *rowAddrowLocal: 矩阵行标,被加数rowAdd: 矩阵行标,加数rate: 加数前倍数*/Matrix& AddRow(int rowLocal, int rowAdd, double rate = 1.0);//矩阵加法 某列 + 倍数*某列/*函数名称: 矩阵列加法 colLocal = colLocal + rate * colAddcolLocal: 矩阵列标,被加数colAdd: 矩阵列标,加数rate: 加数前倍数*/Matrix& AddCol(int colLocal, int colAdd, double rate = 1.0);//*******************矩阵加法*****************///*函数名称: 矩阵加法 本矩阵 = 本矩阵 + mat 前提是两个矩阵维度一致mat: 加数矩阵*/Matrix& AddMat(Matrix& mat);
Matrix.cpp函数实现文件:
//*****************矩阵初等变化***************//
Matrix& Matrix::SwapRow(int row0, int row1)
{//错误判定 越界if ((this->m_Row <= row0) || (this->m_Col <= row1)){std::cout << "Error: <SwapRow> Input row0 Or row1 More Than m_Row" << std::endl;return *this;}else if ((0 > row0) || (0 > row1)){std::cout << "Error: <SwapRow> Input row0 Or row1 Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//中转临时变量double temp = 0.0;for (int j = 0; j < resMat->m_Col; j++){temp = resMat->m_Matrix[row0][j];resMat->m_Matrix[row0][j] = resMat->m_Matrix[row1][j];resMat->m_Matrix[row1][j] = temp;}return*resMat;}
}Matrix& Matrix::SwapCol(int col0, int col1)
{//错误判定 越界if ((this->m_Col <= col0) || (this->m_Col <= col1)){std::cout << "Error: <SwapCol> Input col0 Or col1 More Than m_Col" << std::endl;return *this;}else if ((0 > col0) || (0 > col1)){std::cout << "Error: <SwapCol> Input col0 Or col1 Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//中转临时变量double temp = 0.0;for (int i = 0; i < resMat->m_Row; i++){temp = resMat->m_Matrix[i][col0];resMat->m_Matrix[i][col0] = resMat->m_Matrix[i][col1];resMat->m_Matrix[i][col1] = temp;}return*resMat;}
}//矩阵加法 某行 + 倍数*某行
Matrix& Matrix::AddRow(int rowLocal, int rowAdd, double rate)
{if ((this->m_Row <= rowLocal) || (this->m_Row <= rowAdd)){std::cout << "Error: <AddRow> Input rowLocal Or rowAdd More Than m_Row" << std::endl;return *this;}else if ((0 > rowLocal) || (0 > rowAdd)){std::cout << "Error: <AddRow> Input rowLocal Or rowAdd Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//指定行相加for (int j = 0; j < resMat->m_Col; j++){resMat->m_Matrix[rowLocal][j] += rate * resMat->m_Matrix[rowAdd][j];}return *resMat;}
}//矩阵加法 某列 + 倍数*某列
Matrix& Matrix::AddCol(int colLocal, int colAdd, double rate)
{if ((this->m_Col <= colLocal) || (this->m_Col <= colAdd)){std::cout << "Error: <AddCol> Input colLocal Or colAdd More Than m_Col" << std::endl;return *this;}else if ((0 > colLocal) || (0 > colAdd)){std::cout << "Error: <AddCol> Input colLocal Or colAdd Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//指定列相加for (int i = 0; i < resMat->m_Row; i++){resMat->m_Matrix[i][colLocal] += rate * resMat->m_Matrix[i][colAdd];}return *resMat;}
}
测试验证:
测试代码:
int main()
{//定义矩阵数值double tempValue[9] = {1.0, 2.0, 3.0,4.0, 5.0, 6.0,7.0, 8.0, 0.0};//创建矩阵Matrix* tempMatrix = new Matrix(3, 3, tempValue);//打印矩阵std::cout << "************************" << std::endl;std::cout << "数值第1行与第3行交换前:" << std::endl;tempMatrix->PrintMat();//打印矩阵(注意可链式编程)std::cout << "数值第1行与第3行交换后:" << std::endl;tempMatrix->SwapRow(0, 2).PrintMat();//打印矩阵std::cout << "************************" << std::endl;std::cout << "数值第1行与第3行相加前:" << std::endl;tempMatrix->PrintMat();//打印矩阵(注意可链式编程)std::cout << "数值第1行与第3行相加后:" << std::endl;tempMatrix->AddRow(0, 2).PrintMat();system("pause");return 0;
}
应用输出:
************************
数值第1行与第3行交换前:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00数值第1行与第3行交换后:
7.000000e+00 8.000000e+00 0.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
1.000000e+00 2.000000e+00 3.000000e+00************************
数值第1行与第3行相加前:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00数值第1行与第3行相加后:
8.000000e+00 1.000000e+01 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00请按任意键继续. . .
1.7、矩阵加法
实现矩阵基本加法,注意返回值类型为自身的引用,可实现链式编程。
Matrix.h声明文件:
//*******************矩阵加法*****************///*函数名称: 矩阵加法 本矩阵 = 本矩阵 + mat 前提是两个矩阵维度一致mat: 加数矩阵*/Matrix& AddMat(Matrix& mat);
Matrix.cpp函数实现文件:
//*******************矩阵加法*****************//
Matrix& Matrix::AddMat(Matrix& mat)
{Matrix* ResMat = new Matrix(*this);for (int i = 0; i < ResMat->m_Row; i++){for (int j = 0; j < ResMat->m_Col; j++){ResMat->m_Matrix[i][j] += mat.m_Matrix[i][j];}}return *ResMat;
}
测试验证:
测试代码:
int main()
{//定义矩阵数值double tempValue0[9] = {1.0, 2.0, 3.0,4.0, 5.0, 6.0,7.0, 8.0, 0.0};//定义矩阵数值double tempValue1[9] = {2.0, 5.0, 8.0,1.0, 5.0, 9.0,3.0, 6.0, 7.0};//创建矩阵Matrix* tempMatrix0 = new Matrix(3, 3, tempValue0);Matrix* tempMatrix1 = new Matrix(3, 3, tempValue1);//打印矩阵std::cout << "************************" << std::endl;std::cout << "数值矩阵相加前:" << std::endl;tempMatrix0->PrintMat();//打印矩阵(注意可链式编程)std::cout << "数值矩阵相加后:" << std::endl;tempMatrix0->AddMat(*tempMatrix1).PrintMat();system("pause");return 0;
}
应用输出:
************************
数值矩阵相加前:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00数值矩阵相加后:
3.000000e+00 7.000000e+00 1.100000e+01
5.000000e+00 1.000000e+01 1.500000e+01
1.000000e+01 1.400000e+01 7.000000e+00请按任意键继续. . .
1.8、矩阵乘法
实现矩阵基本乘法,注意返回值类型为自身的引用,可实现链式编程。
Matrix.h声明文件:
//*******************矩阵乘法*****************///*函数名称: 矩阵乘法 本矩阵 = 本矩阵*num num: 矩阵乘数*/Matrix& MultNum(double num);/*函数名称: 矩阵乘法(运算符重载) 本矩阵 = 本矩阵*num num: 矩阵乘数*/Matrix& operator * (double num);/*函数名称: 矩阵某行乘数值row = row*numnum: 矩阵某列乘数row: 矩阵行标*/Matrix& MultRow(double num, int row);/*函数名称: 矩阵某列乘数值col = col *numnum: 矩阵某列乘数col: 矩阵列标*/Matrix& MultCol(double num, int col);/*函数名称: 矩阵乘法,按照矩阵相乘规则inputMat: 乘数矩阵*/Matrix& MultMat(Matrix& inputMat);
Matrix.cpp函数实现文件:
//*******************矩阵乘法*****************//
//矩阵数乘
Matrix& Matrix::MultNum(double num)
{//结果矩阵初始化Matrix* resMat = new Matrix(this->m_Row, this->m_Col);//乘后矩阵生成for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){resMat->m_Matrix[i][j] = num * this->m_Matrix[i][j];}}return *resMat;
}//运算符重载 矩阵数乘
Matrix& Matrix::operator*(double num)
{//结果矩阵初始化Matrix* resMat = new Matrix(this->m_Row, this->m_Col);//乘后矩阵生成for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){resMat->m_Matrix[i][j] = num * this->m_Matrix[i][j];}}return *resMat;
}//矩阵某行乘数值 行标从0开始计数
Matrix& Matrix::MultRow(double num, int row)
{if (this->m_Row <= row){std::cout << "Error: <MultRow> Input row More Than m_Row" << std::endl;return *this;}else if (0 > row){std::cout << "Error: <MultRow> Input row Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//乘后矩阵生成for (int j = 0; j < this->m_Col; j++){resMat->m_Matrix[row][j] = num * this->m_Matrix[row][j];}return *resMat;}}//矩阵某列乘数值 列标从0开始计数
Matrix& Matrix::MultCol(double num, int col)
{if (this->m_Col <= col){std::cout << "Error: <MultCol> Input col More Than m_Row" << std::endl;return *this;}else if (0 > col){std::cout << "Error: <MultCol> Input col Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//乘后矩阵生成for (int i = 0; i < this->m_Row; i++){resMat->m_Matrix[i][col] = num * this->m_Matrix[i][col];}return *resMat;}
}//矩阵相乘
Matrix& Matrix::MultMat(Matrix& inputMat)
{Matrix *resMat = new Matrix(this->m_Row, inputMat.m_Col);if (this->m_Col != inputMat.m_Row){std::cout << "Matrix Mult Error!" << std::endl;return *resMat;}else{for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < inputMat.m_Col; j++){for (int k = 0; k < this->m_Col; k++){resMat->m_Matrix[i][j] += this->m_Matrix[i][k] * inputMat.m_Matrix[k][j];}}}return *resMat;}
}
测试验证:
测试代码:
int main()
{//定义矩阵数值double tempValue0[9] = {1.0, 2.0, 3.0,4.0, 5.0, 6.0,7.0, 8.0, 0.0};//定义矩阵数值double tempValue1[9] = {2.0, 5.0, 8.0,1.0, 5.0, 9.0,3.0, 6.0, 7.0};//创建矩阵Matrix* tempMatrix0 = new Matrix(3, 3, tempValue0);Matrix* tempMatrix1 = new Matrix(3, 3, tempValue1);//打印矩阵std::cout << "************************" << std::endl;std::cout << "数值矩阵相乘前:" << std::endl;tempMatrix0->PrintMat();//打印矩阵(注意可链式编程)std::cout << "数值矩阵相乘后:" << std::endl;tempMatrix0->MultMat(*tempMatrix1).PrintMat();system("pause");return 0;
}
应用输出:
************************
数值矩阵相乘前:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00数值矩阵相乘后:
1.300000e+01 3.300000e+01 4.700000e+01
3.100000e+01 8.100000e+01 1.190000e+02
2.200000e+01 7.500000e+01 1.280000e+02请按任意键继续. . .
matlab验证:
>> tempMatrix0 = [1 2 3;4 5 6; 7 8 0];
>> tempMatrix1 = [2 5 8;1 5 9; 3 6 7];
>> res = tempMatrix0*tempMatrix1res =13 33 4731 81 11922 75 128
1.9、行列式相关操作
实现行列式计算相关操作。
Matrix.h声明文件:
//******************行列式相关操作***********************///*函数名称: 求解矩阵对应行列式数值,前提为方阵,按照定义求解,时间复杂度为O(n!*n),一般不用此方法求解*/double Det();/*函数名称: 求解矩阵对应行列式的顺序主子式,前提为方阵,按照定义求解,时间复杂度为O(n!*n),一般不用此方法求解order: 阶数*/double Det(int order);/*函数名称: 矩阵行标为row、列标为col的余子式row: 矩阵行标col: 矩阵列标*/Matrix& ChildMatrix(int row, int col);/*函数名称: 通过高斯列主消元求解矩阵行列式数值,最为常用*/double DetRow();
Matrix.cpp函数实现文件:
//矩阵的行列式数值
double Matrix::Det()
{double res = 0.0;int sign = 1;if (this->m_Row != this->m_Col){//错误判定std::cout << "Error: <Det> Matrix Col != Row" << std::endl;return 0;}else if (this->m_Row <= 1){//程序终止出口return this->m_Matrix[0][0];}else{for (int i = 0; i < this->m_Col; i++){Matrix* temp = &(this->ChildMatrix(0, i));res += sign * this->m_Matrix[0][i] * (temp->Det());sign = -1*sign;delete temp;}}}//矩阵行列式顺序主子式 order阶数
double Matrix::Det(int order)
{if (this->m_Row != this->m_Col){//错误判定std::cout << "Error: <Det> Matrix Col != Row" << std::endl;return 0;}else if (order < 0){std::cout << "Error: <Det> Input Order Less 0" << std::endl;return 0;}else if (order >= this->m_Row){std::cout << "Error: <Det> Input Order More Than Row" << std::endl;return 0;}else{Matrix tempMat(order + 1, order + 1);for (int i = 0; i < tempMat.m_Col; i++){for (int j = 0; j < tempMat.m_Row; j++){tempMat.m_Matrix[i][j] = this->m_Matrix[i][j];}}return tempMat.Det();}
}//求解余子式
Matrix& Matrix::ChildMatrix(int row, int col)
{if (this->m_Row != this->m_Col){std::cout << "Error: <ChildMatrix> Matrix row != col" << std::endl;return *this;}else if (this->m_Row <= 1){std::cout << "Error: <ChildMatrix> Matrix Row Less 1 " << std::endl;return *this;}else if ((row > this->m_Row) || (col > this->m_Col)){std::cout << "Error: <ChildMatrix> Input Row Or Col More Than Matix Max Row Or Col" << std::endl; return* this; }else{Matrix* resMat = new Matrix(this->m_Row-1, this->m_Col-1);for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){if ((i < row) && (j < col))resMat->m_Matrix[i][j] = this->m_Matrix[i][j];else if((i > row) && (j < col))resMat->m_Matrix[i-1][j] = this->m_Matrix[i][j];else if((i < row) && (j > col))resMat->m_Matrix[i][j - 1] = this->m_Matrix[i][j];else if((i > row) && (j > col))resMat->m_Matrix[i - 1][j - 1] = this->m_Matrix[i][j];}}return *resMat;}
}//列主消元处理为上三角矩阵
double Matrix::DetRow()
{//交换标志位 1代表偶数次交换 -1代表奇数次交换int flagShift = 1;//本矩阵Matrix *localMat = new Matrix(*this);//行列式数值double resDet = 1.0;//*******************通过交换 num1*i + num2*j 实现下三角为0***************//for (int i = 0; i < localMat->m_Row - 1; i++){//记录最大行所在行标int tempMaxRow = i;for (int i1 = i + 1; i1 < localMat->m_Row; i1++){if (abs(localMat->m_Matrix[i1][i]) > abs(localMat->m_Matrix[tempMaxRow][i])){tempMaxRow = i1;}}if (tempMaxRow != i){//std::cout << i << " 行交换" << tempMaxRow << " 行" << std::endl;//进行交换 将当前第i行与第tempMaxRow行进行互换 初等行变换*localMat = localMat->SwapRow(i, tempMaxRow);//记录交换次数flagShift = -flagShift;//localMat->PrintMat();}//此对角线以下的元素通过初等变化为0for (int i2 = i + 1; i2 < localMat->m_Row; i2++){if (localMat->m_Matrix[i2][i] != 0){//std::cout << "<" << localMat->m_Matrix[i][i] << "> *" << i2 << " 行 + <" << -1.0 * (localMat->m_Matrix[i2][i]) << "> *" << i << " 行" << std::endl;*localMat = localMat->AddRow(i2, i, -1.0 * (localMat->m_Matrix[i2][i]) / localMat->m_Matrix[i][i]);//localMat->PrintMat();}}}//计算行列式数值 对角线相乘for (int i = 0; i < localMat->m_Row; i++){resDet = resDet * localMat->m_Matrix[i][i];}//矩阵交换一次就会变号resDet = flagShift * resDet;//清理localMatrixdelete localMat;return resDet;
}
测试验证:
测试代码:
int main()
{//定义矩阵数值double tempValue0[9] = {1.0, 2.0, 3.0,4.0, 5.0, 6.0,7.0, 8.0, 0.0};//创建矩阵Matrix* tempMatrix0 = new Matrix(3, 3, tempValue0);//打印矩阵std::cout << "************************" << std::endl;std::cout << "高斯列主消元过程:" << std::endl;std::cout << tempMatrix0->DetRow() << std::endl;system("pause");return 0;
}
应用输出:
************************
高斯列主消元过程:
0 行交换2 行
7.000000e+00 8.000000e+00 0.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
1.000000e+00 2.000000e+00 3.000000e+00<7.000000e+00> *1 行 + <-4.000000e+00> *0 行
7.000000e+00 8.000000e+00 0.000000e+00
0.000000e+00 4.285714e-01 6.000000e+00
1.000000e+00 2.000000e+00 3.000000e+00<7.000000e+00> *2 行 + <-1.000000e+00> *0 行
7.000000e+00 8.000000e+00 0.000000e+00
0.000000e+00 4.285714e-01 6.000000e+00
0.000000e+00 8.571429e-01 3.000000e+001 行交换2 行
7.000000e+00 8.000000e+00 0.000000e+00
0.000000e+00 8.571429e-01 3.000000e+00
0.000000e+00 4.285714e-01 6.000000e+00<8.571429e-01> *2 行 + <-4.285714e-01> *1 行
7.000000e+00 8.000000e+00 0.000000e+00
0.000000e+00 8.571429e-01 3.000000e+00
0.000000e+00 5.551115e-17 4.500000e+002.700000e+01
请按任意键继续. . .
Matlab验证:
>> tempMatrix0 = [1 2 3;4 5 6; 7 8 0];
>> det(tempMatrix0)ans =27.0000
1.10、矩阵求逆
实现矩阵求逆相关操作
Matrix.h声明文件:
//*********************矩阵求逆********************///*函数名称: 矩阵求逆,按照定义求解,1/|A|*(A*),时间复杂度为O(n!*n),一般不用此方法*/Matrix& Inverse();/*函数名称: 矩阵求逆,通过行初等变化,高斯列主消元法求解*/Matrix& InverseRow();/*函数名称: 矩阵求逆,只针对于下三角矩阵进行求解*/Matrix& InverseDownTriangle();/*函数名称: 矩阵求逆,只针对于上三角矩阵进行求解*/Matrix& InverseUpTriangle();//矩阵LU分解/*函数名称: 矩阵LU分解LMat: 矩阵分解后的L矩阵UMat: 矩阵分解后的U矩阵*/void ResolveLU(Matrix& LMat, Matrix& UMat);/*函数名称: 矩阵的LUP分解 P*A = L*U 添加了列主消元功能LMat: 矩阵分解后的L矩阵UMat: 矩阵分解后的U矩阵PMat: 矩阵分解后的P矩阵*/void ResolveLUP(Matrix& LMat, Matrix& UMat, Matrix& PMat);
Matrix.cpp函数实现文件:
//矩阵求逆
Matrix& Matrix::Inverse()
{if (abs(this->DetRow()) < MIN_DET){std::cout << "Error: <Inverse> Matrix Det Near 0" << std::endl;return *this;}else{Matrix* resMat = new Matrix(this->m_Row, this->m_Col);for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){Matrix* temp = &(this->ChildMatrix(j, i));resMat->m_Matrix[i][j] = pow(-1.0, (i + j)) / this->DetRow() * (temp->DetRow());delete temp;}}return *resMat;}
}//矩阵求逆 行初等变化
Matrix& Matrix::InverseRow()
{//错误判断if (abs(this->DetRow()) < MIN_DET){std::cout << "Error: <InverseRow> Matrix Det Near 0" << std::endl;return *this;}else if (this->m_Row <= 1){std::cout << "Error: <InverseRow> Size Less 2" << std::endl;return *this;}else{//单位矩阵 与带转换矩阵维度相同的Matrix uint = this->Uint();//结果矩阵 逆矩阵 初始状态与本矩阵相同 为不使本矩阵发生改变Matrix temp(this->m_Row, this->m_Col);Matrix* resMat = new Matrix(temp.Uint());//本矩阵Matrix localMat(*this);//*******************通过交换 num1*i + num2*j 实现下三角为0***************//for (int i = 0; i < localMat.m_Row - 1; i++){//记录最大行所在行标int tempMaxRow = i;for (int i1 = i + 1; i1 < localMat.m_Row; i1++){if (abs(localMat.m_Matrix[i1][i]) > abs(localMat.m_Matrix[tempMaxRow][i])){tempMaxRow = i1;}}if (tempMaxRow != i){//std::cout << i << " 行交换" << tempMaxRow << " 行" << std::endl;//进行交换 将当前第i行与第tempMaxRow行进行互换 初等行变换localMat = localMat.SwapRow(i, tempMaxRow);*resMat = resMat->SwapRow(i, tempMaxRow);//localMat.PrintMat();}//此对角线以下的元素通过初等变化为0for (int i2 = i + 1; i2 < localMat.m_Row; i2++){if (localMat.m_Matrix[i2][i] != 0){//std::cout << "<" << localMat.m_Matrix[i][i] << "> *" << i2 << " 行 + <" << -1.0 * (localMat.m_Matrix[i2][i]) << "> *" << i << " 行" << std::endl;*resMat = resMat->AddRow(i2, i, -1.0 * (localMat.m_Matrix[i2][i]) / localMat.m_Matrix[i][i]);localMat = localMat.AddRow(i2, i, -1.0 * (localMat.m_Matrix[i2][i]) / localMat.m_Matrix[i][i]);//localMat.PrintMat();}}}//错误判断if (localMat.m_Matrix[localMat.m_Row - 1][localMat.m_Col - 1] == 0){std::cout << "Error: <InverseRow> marix[" << localMat.m_Row - 1 << "][" << localMat.m_Col - 1 <<"] == 0" << std::endl;return *this;}//*******************通过 num1*i + num2*j 实现上三角为0***************//for (int i = localMat.m_Row - 1; i > 0; i--){for (int i2 = i - 1; i2 >= 0; i2--){if (localMat.m_Matrix[i2][i] != 0){//std::cout << "<" << localMat.m_Matrix[i][i] << "> *" << i2 << " 行 + <" << -1.0 * (localMat.m_Matrix[i2][i]) << "> *" << i << " 行" << std::endl;*resMat = resMat->AddRow(i2, i, -1.0 * (localMat.m_Matrix[i2][i]) / localMat.m_Matrix[i][i]);localMat = localMat.AddRow(i2, i, -1.0 * (localMat.m_Matrix[i2][i]) / localMat.m_Matrix[i][i]);//localMat.PrintMat();}}}//*******************通过 i*num 实现矩阵为单位矩阵***************//for (int i = 0; i < localMat.m_Row; i++){if (localMat.m_Matrix[i][i] == 0){std::cout << "Error: <InverseRow> matrix[" << i << "]" << "[" << i << "] == 0" << std::endl;return *this;}else{//std::cout << "<" << 1 / localMat.m_Matrix[i][i] << "> *" << i << " 行" << std::endl;*resMat = resMat->MultRow(1 / localMat.m_Matrix[i][i], i);localMat = localMat.MultRow(1 / localMat.m_Matrix[i][i], i);//localMat.PrintMat();}}return *resMat;}
}//矩阵求逆 下三角矩阵
Matrix& Matrix::InverseDownTriangle()
{//错误判断 方阵检测if (this->m_Row != this->m_Col){std::cout << "Error: <InverseDownTriangle> Matrix Col != Row" << std::endl;return *this;}//下三角求逆Matrix* resMat = new Matrix(*this);for (int i = 0; i < resMat->m_Row; i++){for (int j = 0; j <= i; j++){//分段求解 对角线为倒数if (i == j){resMat->m_Matrix[i][j] = 1 / resMat->m_Matrix[i][j];}else{//分段求解 非对角线元素 double tempSum = 0.0;for (int k = j; k <= i - 1; k++){tempSum += resMat->m_Matrix[i][k] * resMat->m_Matrix[k][j];}resMat->m_Matrix[i][j] = -1.0*tempSum / resMat->m_Matrix[i][i];}}}return *resMat;}//矩阵求逆 上三角矩阵
Matrix& Matrix::InverseUpTriangle()
{//错误判断 方阵检测if (this->m_Row != this->m_Col){std::cout << "Error: <InverseUpTriangle> Matrix Col != Row" << std::endl;return *this;}//上三角求逆Matrix* resMat = new Matrix(*this);for (int j = resMat->m_Col-1; j >=0; j--){for (int i = j; i >=0; i--){//分段求解 对角线为倒数if (i == j){resMat->m_Matrix[i][j] = 1 / resMat->m_Matrix[i][j];}else{//分段求解 非对角线元素 double tempSum = 0.0;for (int k = j; k >= i+1; k--){tempSum += resMat->m_Matrix[i][k] * resMat->m_Matrix[k][j];}resMat->m_Matrix[i][j] = -1.0 * tempSum / resMat->m_Matrix[i][i];}}}return *resMat;
}//矩阵LU分解 顺序分解 对于病态矩阵可能存在精度问题
void Matrix::ResolveLU(Matrix& LMat, Matrix& UMat)
{if (this->m_Col != this->m_Row){std::cout << "Error: <ResolveLU> Is Not Square Matrix" << std::endl;return;}//存在性判定 顺序主子式不为0for (int i = 0; i < this->m_Row; i++){if (this->Det(i) == 0){std::cout << "Error: <ResolveLU> order Det = 0" << std::endl;return;}}//LU 分解//L矩阵为单位矩阵LMat = this->Uint();//U矩阵初始化为空矩阵Matrix temp(this->m_Row, this->m_Col);UMat = temp;for (int i = 0; i < this->m_Row; i++){//计算Ufor (int j1 = i; j1 < this->m_Col; j1++){double tempSum1 = 0.0;if (i != 0){for (int j2 = 0; j2 <= i - 1; j2++){tempSum1 += LMat.m_Matrix[i][j2] * UMat.m_Matrix[j2][j1];}}UMat.m_Matrix[i][j1] = this->m_Matrix[i][j1] - tempSum1;}//计算Lfor (int i1 = i; i1 < this->m_Row; i1++){double tempSum2 = 0.0;if (i != 0){for (int j2 = 0; j2 <= i - 1; j2++){tempSum2 += LMat.m_Matrix[i1][j2] * UMat.m_Matrix[j2][i];}}LMat.m_Matrix[i1][i] = (this->m_Matrix[i1][i] - tempSum2)/UMat.m_Matrix[i][i];}}}//矩阵的LUP分解 P*A = L*U 添加了列主消元功能
//L为主对角线元素为1的下三角矩阵 U为上二角矩阵 P为行交换矩阵 P*A=L*U
void Matrix::ResolveLUP(Matrix& LMat, Matrix& UMat, Matrix& PMat)
{//条件判断 矩阵行列式不为0if (this->Det() == 0){std::cout << "Error: <ResolveLUP> Can't Resolve Matrix To L U P" << std::endl;return;}//初始化 L U PLMat = this->Uint();PMat = this->Uint();UMat = *this;//进行分解计算for (int i = 0; i < UMat.m_Row - 1; i++){//记录最大行所在行标int tempMaxRow = i;for (int i1 = i + 1; i1 < UMat.m_Row; i1++){if (abs(UMat.m_Matrix[i1][i]) > abs(UMat.m_Matrix[tempMaxRow][i])){tempMaxRow = i1;}}//进行交换 将当前第i行与第tempMaxRow行进行互换 初等行变换UMat = UMat.SwapRow(i, tempMaxRow);//L矩阵做出对应交换 先交换<itempMaxRow>列再交换<itempMaxRow>行LMat = LMat.SwapCol(i, tempMaxRow);LMat = LMat.SwapRow(i, tempMaxRow);//P矩阵做出对应变换 交换<itempMaxRow>行PMat = PMat.SwapRow(i, tempMaxRow);//高斯消元 V矩阵消除下三角区域,L矩阵添加下三角区域for (int i1 = i + 1; i1 < UMat.m_Row; i1++){//记录消元系数double deleteVar = UMat.m_Matrix[i1][i] / UMat.m_Matrix[i][i];//L矩阵列填充LMat.m_Matrix[i1][i] = deleteVar;//U矩阵列消除UMat = UMat.MultRow(UMat.m_Matrix[i][i], i1).AddRow(i1, i, -1.0 * UMat.m_Matrix[i1][i]).MultRow(1 / UMat.m_Matrix[i][i], i1);}}return;
}
测试验证:
测试代码:
int main()
{//定义矩阵数值double tempValue0[9] = {1.0, 2.0, 3.0,4.0, 5.0, 6.0,7.0, 8.0, 0.0};//创建矩阵Matrix* tempMatrix0 = new Matrix(3, 3, tempValue0);Matrix* tempMatrix0L = new Matrix(3, 3);Matrix* tempMatrix0U = new Matrix(3, 3);Matrix* tempMatrix0P = new Matrix(3, 3);//打印矩阵std::cout << "************************" << std::endl;std::cout << "矩阵求逆前:" << std::endl;tempMatrix0->PrintMat();std::cout << "矩阵求逆后:" << std::endl;tempMatrix0->InverseRow().PrintMat();std::cout << "求逆验证:" << std::endl;tempMatrix0->MultMat(tempMatrix0->InverseRow()).PrintMat();std::cout << "************************" << std::endl;std::cout << "矩阵LU分解前:" << std::endl;tempMatrix0->PrintMat();std::cout << "矩阵LU分解后:" << std::endl;tempMatrix0->ResolveLUP(*tempMatrix0L, *tempMatrix0U, *tempMatrix0P);std::cout << "矩阵L:" << std::endl;tempMatrix0L->PrintMat();std::cout << "矩阵U:" << std::endl;tempMatrix0U->PrintMat();std::cout << "矩阵P:" << std::endl;tempMatrix0P->PrintMat();system("pause");return 0;
}
应用输出:
************************
矩阵求逆前:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00矩阵求逆后:
-1.777778e+00 8.888889e-01 -1.111111e-01
1.555556e+00 -7.777778e-01 2.222222e-01
-1.111111e-01 2.222222e-01 -1.111111e-01求逆验证:
1.000000e+00 -1.110223e-16 0.000000e+00
-2.220446e-16 1.000000e+00 0.000000e+00
1.776357e-15 -8.881784e-16 1.000000e+00************************
矩阵LU分解前:
1.000000e+00 2.000000e+00 3.000000e+00
4.000000e+00 5.000000e+00 6.000000e+00
7.000000e+00 8.000000e+00 0.000000e+00矩阵LU分解后:
矩阵L:
1.000000e+00 0.000000e+00 0.000000e+00
1.428571e-01 1.000000e+00 0.000000e+00
5.714286e-01 5.000000e-01 1.000000e+00矩阵U:
7.000000e+00 8.000000e+00 0.000000e+00
0.000000e+00 8.571429e-01 3.000000e+00
0.000000e+00 0.000000e+00 4.500000e+00矩阵P:
0.000000e+00 0.000000e+00 1.000000e+00
1.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 1.000000e+00 0.000000e+00请按任意键继续. . .
matlab验证:
>> tempMatrix0 = [1 2 3; 4 5 6; 7 8 0];
>> tempMatrix0^-1ans =-1.7778 0.8889 -0.11111.5556 -0.7778 0.2222-0.1111 0.2222 -0.1111>> [L, U, P] = lu(tempMatrix0)L =1.0000 0 00.1429 1.0000 00.5714 0.5000 1.0000U =7.0000 8.0000 00 0.8571 3.00000 0 4.5000P =0 0 11 0 00 1 0
2、private variable
私有成员变量
double** m_Matrix; //矩阵int m_Row; //矩阵行数int m_Col; //矩阵列数
3、全部源码
为了方便大家复制应用,这里直接贴出源码
Matrix.h声明文件:
#ifndef _MATRIX_H_
#define _MATRIX_H_
#include <iostream>
#include <math.h>
#include <vector>//矩阵最大容量
#define MAX_COUNT 500
#define MIN_DET 1e-12 //行列式最小数值class Matrix
{
public://******************************构造函数与析构函数********************************///*函数名称: 无参构造函数*/Matrix();/*函数名称: 矩阵有参构造函数,初始化为row行、col列的0矩阵row: 矩阵行数col: 矩阵列数*/Matrix(int row, int col);/*函数名称: 矩阵有参构造函数,初始化为row行、col列、数值为mat的矩阵row: 矩阵行数col: 矩阵列数*mat: 矩阵数值一维数组*/Matrix(int row, int col, double* mat);/*函数名称: 深拷贝构造函数mat: 需要复制的矩阵*/Matrix(const Matrix& mat);/*函数名称: 析构函数*/~Matrix();//*******************获取矩阵*****************///*函数名称: 获取矩阵的第row行、第col列元素数值row: 矩阵行数col: 矩阵列数*/double GetMatrixEle(int row, int col);//*******************设置矩阵*****************///*函数名称: 设置矩阵第row行、第col列数值row: 矩阵行数col: 矩阵列数value: 设置的矩阵数值*/void SetMatrixEle(int row, int col, double value);/*函数名称: 深拷贝矩阵mat: 需要复制的矩阵*/Matrix CopyMat(const Matrix mat);//********************************矩阵的相关计算**********************************////*******************打印矩阵*****************///*函数名称: 打印矩阵*/void PrintMat();//*****************矩阵基本操作***************///*函数名称: 矩阵转置,返回的是自身引用,可链式调用*/Matrix& Transpose();/*函数名称: 等维度的单位矩阵,前提是方阵*/Matrix& Uint();//****************矩阵保留与剔除**************///*函数名称: 剔除矩阵中以index为行标和列标的行和列,num代表index的大小*index: 矩阵中的行号与列号一维数组num: index动态数组长度*/Matrix& DeleteMat(int *index, int num);/*函数名称: 剔除矩阵中以index为行标和列标的行和列,num代表index的大小*index: 矩阵中的行号与列号一维动态数组num: index动态数组长度*/Matrix& DeleteMat(std::vector<int> index, int num);/*函数名称: 剔除矩阵中以index为行标的行,num代表index的大小*index: 矩阵中的行号一维数组num: index动态数组长度*/Matrix& DeleteRow(int* index, int num);/*函数名称: 剔除矩阵中以index为行标的行,num代表index的大小*index: 矩阵中的行号一维动态数组num: index动态数组长度*/Matrix& DeleteRow(std::vector<int> index, int num);/*函数名称: 剔除矩阵中以index为列标的列,num代表index的大小*index: 矩阵中的列号一维数组num: index动态数组长度*/Matrix& DeleteCol(int* index, int num);/*函数名称: 剔除矩阵中以index为列标的列,num代表index的大小*index: 矩阵中的列号一维动态数组num: index动态数组长度*/Matrix& DeleteCol(std::vector<int> index, int num);//******************矩阵的替换****************///*函数名称: 替换矩阵中行标和列标为 index中的行与列,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的行标和列标的一维数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceMat(int* index, int num, Matrix& mat);/*函数名称: 替换矩阵中行标和列标为 index中的行与列,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的行标和列标的一维动态数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceMat(std::vector<int> index, int num, Matrix& mat);/*函数名称: 替换矩阵中行标为 index中的行,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的行标的一维数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceRow(int* index, int num, Matrix& mat);/*函数名称: 替换矩阵中行标为 index中的行,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的行标的一动态维数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceRow(std::vector<int> index, int num, Matrix& mat);/*函数名称: 替换矩阵中列标为 index中的列,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的列标的一维数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceCol(int* index, int num, Matrix& mat);/*函数名称: 替换矩阵中列标为 index中的列,num代表index的大小, mat是需要替换的矩阵*index: 矩阵中的列标的一维动态数组num: index动态数组长度mat: 需要替换的矩阵*/Matrix& ReplaceCol(std::vector<int> index, int num, Matrix& mat);//*****************矩阵初等变化***************///*函数名称: 交换矩阵中行标为row0与row1的元素row0: 矩阵行标0row1: 矩阵行标1*/Matrix& SwapRow(int row0, int row1);/*函数名称: 交换矩阵中列标为col0与col1的元素col0: 矩阵列标0col1: 矩阵列标1*/Matrix& SwapCol(int col0, int col1);/*函数名称: 矩阵行加法 rowLocal = rowLocal + rate *rowAddrowLocal: 矩阵行标,被加数rowAdd: 矩阵行标,加数rate: 加数前倍数*/Matrix& AddRow(int rowLocal, int rowAdd, double rate = 1.0);//矩阵加法 某列 + 倍数*某列/*函数名称: 矩阵列加法 colLocal = colLocal + rate * colAddcolLocal: 矩阵列标,被加数colAdd: 矩阵列标,加数rate: 加数前倍数*/Matrix& AddCol(int colLocal, int colAdd, double rate = 1.0);//*******************矩阵加法*****************///*函数名称: 矩阵加法 本矩阵 = 本矩阵 + mat 前提是两个矩阵维度一致mat: 加数矩阵*/Matrix& AddMat(Matrix& mat);//*******************矩阵乘法*****************///*函数名称: 矩阵乘法 本矩阵 = 本矩阵*num num: 矩阵乘数*/Matrix& MultNum(double num);/*函数名称: 矩阵乘法(运算符重载) 本矩阵 = 本矩阵*num num: 矩阵乘数*/Matrix& operator * (double num);/*函数名称: 矩阵某行乘数值row = row*numnum: 矩阵某列乘数row: 矩阵行标*/Matrix& MultRow(double num, int row);/*函数名称: 矩阵某列乘数值col = col *numnum: 矩阵某列乘数col: 矩阵列标*/Matrix& MultCol(double num, int col);/*函数名称: 矩阵乘法,按照矩阵相乘规则inputMat: 乘数矩阵*/Matrix& MultMat(Matrix& inputMat);//******************行列式相关操作***********************///*函数名称: 求解矩阵对应行列式数值,前提为方阵,按照定义求解,时间复杂度为O(n!*n),一般不用此方法求解*/double Det();/*函数名称: 求解矩阵对应行列式的顺序主子式,前提为方阵,按照定义求解,时间复杂度为O(n!*n),一般不用此方法求解order: 阶数*/double Det(int order);/*函数名称: 矩阵行标为row、列标为col的余子式row: 矩阵行标col: 矩阵列标*/Matrix& ChildMatrix(int row, int col);/*函数名称: 通过高斯列主消元求解矩阵行列式数值,最为常用*/double DetRow();//*********************矩阵求逆********************///*函数名称: 矩阵求逆,按照定义求解,1/|A|*(A*),时间复杂度为O(n!*n),一般不用此方法*/Matrix& Inverse();/*函数名称: 矩阵求逆,通过行初等变化,高斯列主消元法求解*/Matrix& InverseRow();/*函数名称: 矩阵求逆,只针对于下三角矩阵进行求解*/Matrix& InverseDownTriangle();/*函数名称: 矩阵求逆,只针对于上三角矩阵进行求解*/Matrix& InverseUpTriangle();//矩阵LU分解/*函数名称: 矩阵LU分解LMat: 矩阵分解后的L矩阵UMat: 矩阵分解后的U矩阵*/void ResolveLU(Matrix& LMat, Matrix& UMat);/*函数名称: 矩阵的LUP分解 P*A = L*U 添加了列主消元功能LMat: 矩阵分解后的L矩阵UMat: 矩阵分解后的U矩阵PMat: 矩阵分解后的P矩阵*/void ResolveLUP(Matrix& LMat, Matrix& UMat, Matrix& PMat);private:double** m_Matrix; //矩阵int m_Row; //矩阵行数int m_Col; //矩阵列数};#endif
Matrix.cpp实现文件:
#include "Matrix.h"//******************************构造函数与析构函数********************************//
Matrix::Matrix()
{}//初始化矩阵 默认值为0
Matrix::Matrix(int row, int col)
{this->m_Row = row;this->m_Col = col;//开辟内存this->m_Matrix = new double* [row];for (int i = 0; i < row; i++){this->m_Matrix[i] = new double[col] {0.0};}}//初始化矩阵 设定数值
Matrix::Matrix(int row, int col, double *mat)
{this->m_Row = row;this->m_Col = col;//开辟内存this->m_Matrix = new double* [row];for (int i = 0; i < row; i++){this->m_Matrix[i] = new double[col] {0.0};}//矩阵赋值for(int i = 0; i<row; i++){for (int j = 0; j < col; j++){this->m_Matrix[i][j] = mat[i * col + j];}}
}//深拷贝
Matrix::Matrix(const Matrix& mat)
{//行列传递this->m_Row = mat.m_Row;this->m_Col = mat.m_Col;//矩阵深拷贝this->m_Matrix = new double* [this->m_Row];for (int i = 0; i < this->m_Row; i++){this->m_Matrix[i] = new double[this->m_Col];memcpy(this->m_Matrix[i], mat.m_Matrix[i], sizeof(double) * this->m_Col);}
}Matrix::~Matrix()
{//释放矩阵每一行for (int i = 0; i < this->m_Row; i++){if (this->m_Matrix[i] != NULL){delete[]this->m_Matrix[i];this->m_Matrix[i] = NULL;}}//释放矩阵顶点if (this->m_Matrix != NULL){delete[]this->m_Matrix;this->m_Matrix = NULL;}
}
//获取矩阵某个元素 某行某列
double Matrix::GetMatrixEle(int row, int col)
{if (row >= this->m_Row){std::cout << "Error: <GetMatrixEle> Input row >= m_Row" << std::endl;return 0.0;}else if (col >= this->m_Col){std::cout << "Error: <GetMatrixEle> Input col >= m_Col" << std::endl;return 0.0;}else{return this->m_Matrix[row][col];}
}//*******************设置矩阵*****************//
void Matrix::SetMatrixEle(int row, int col, double value)
{if (row >= this->m_Row){std::cout << "Error: <SetMatrixEle> Input row >= m_Row" << std::endl;return;}else if (col >= this->m_Col){std::cout << "Error: <SetMatrixEle> Input col >= m_Col" << std::endl;return;}else{this->m_Matrix[row][col] = value;return;}
}Matrix Matrix::CopyMat(const Matrix mat)
{//行列传递this->m_Row = mat.m_Row;this->m_Col = mat.m_Col;//矩阵深拷贝this->m_Matrix = new double* [this->m_Row];for (int i = 0; i < this->m_Row; i++){this->m_Matrix[i] = new double[this->m_Col];memcpy(this->m_Matrix[i], mat.m_Matrix[i], sizeof(double) * this->m_Col);}return *this;
}//*******************打印矩阵*****************//
//矩阵输出
void Matrix::PrintMat()
{for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){std::cout.setf(std::ios::scientific); //科学计数法表示std::cout << this->m_Matrix[i][j] << "\t";}std::cout << std::endl;}std::cout << std::endl;
}//*****************矩阵基本操作***************//
//矩阵转置
Matrix& Matrix::Transpose()
{Matrix* resMat = new Matrix(this->m_Col, this->m_Row);for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){resMat->m_Matrix[j][i] = this->m_Matrix[i][j];}}return *resMat;
}//求等长度单位矩阵
Matrix& Matrix::Uint()
{//矩阵是否为方阵if (this->m_Col != this->m_Row){std::cout << "Error: <Uint> Row != Col" << std::endl;Matrix* resMat = new Matrix(this->m_Row, this->m_Row);return *resMat;}else{//单位矩阵初始化Matrix* resMat = new Matrix(this->m_Row, this->m_Col);//单位矩阵生成for (int i = 0; i < this->m_Row; i++){resMat->m_Matrix[i][i] = 1.0;}return *resMat;}
}//****************矩阵保留与剔除**************//
//剔除矩阵的 index中的行与列,num代表index的大小
Matrix& Matrix::DeleteMat(int* index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row - num, this->m_Col - num);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}else if (index[i] >= this->m_Col){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num-1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[recIndex[iRow]][recIndex[iCol]];}}return *resMat;}Matrix& Matrix::DeleteMat(std::vector<int> index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row - num, this->m_Col - num);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}else if (index[i] >= this->m_Col){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num - 1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[recIndex[iRow]][recIndex[iCol]];}}return *resMat;
}//剔除矩阵的 index中的行,num代表index的大小
Matrix& Matrix::DeleteRow(int* index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row - num, this->m_Col);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num - 1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[recIndex[iRow]][iCol];}}return *resMat;
}Matrix& Matrix::DeleteRow(std::vector<int> index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row - num, this->m_Col);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num - 1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[recIndex[iRow]][iCol];}}return *resMat;
}Matrix& Matrix::DeleteCol(int* index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row, this->m_Col - num);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num - 1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[iRow][recIndex[iCol]];}}return *resMat;
}Matrix& Matrix::DeleteCol(std::vector<int> index, int num)
{//结果矩阵Matrix* resMat = new Matrix(this->m_Row, this->m_Col - num);int recIndex[MAX_COUNT];int currIndex = 0;//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <DeleteMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//筛选出剔除后行数for (int iRow = 0; iRow < this->m_Row; iRow++){for (int iNum = 0; iNum < num; iNum++){if (iRow == index[iNum]){break;}if (iNum == num - 1){recIndex[currIndex++] = iRow;}}}//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[iRow][iCol] = this->m_Matrix[iRow][recIndex[iCol]];}}return *resMat;
}//******************矩阵的替换****************//
//替换矩阵中的行和列 index中的行与列,num代表index的大小
Matrix& Matrix::ReplaceMat(int* index, int num, Matrix& mat)
{//错误判定 方阵if (this->m_Row != this->m_Col){std::cout << "Error: <ReplaceMat> this m_Col != m_Row" << std::endl;return *this;}//检验插入矩阵为方阵if (mat.m_Row != mat.m_Col){std::cout << "Error: <ReplaceMat> mat m_Col != m_Row" << std::endl;return *this;}//检验插入矩阵大小与num保持一致if (mat.m_Col != num){std::cout << "Error: <ReplaceMat> num != mat.m_Col" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <ReplaceMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}else if (index[i] >= this->m_Col){std::cout << "Error: <ReplaceMat> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < num; iRow++){for (int iCol = 0; iCol < num; iCol++){resMat->m_Matrix[index[iRow]][index[iCol]] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}Matrix& Matrix::ReplaceMat(std::vector<int> index, int num, Matrix& mat)
{//错误判定 方阵if (this->m_Row != this->m_Col){std::cout << "Error: <ReplaceMat> this m_Col != m_Row" << std::endl;return *this;}//检验插入矩阵为方阵if (mat.m_Row != mat.m_Col){std::cout << "Error: <ReplaceMat> mat m_Col != m_Row" << std::endl;return *this;}//检验插入矩阵大小与num保持一致if (mat.m_Col != num){std::cout << "Error: <ReplaceMat> num != mat.m_Col" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <ReplaceMat> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}else if (index[i] >= this->m_Col){std::cout << "Error: <ReplaceMat> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < num; iRow++){for (int iCol = 0; iCol < num; iCol++){resMat->m_Matrix[index[iRow]][index[iCol]] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}//替换矩阵中的行 index中的行,num代表index的大小, mat是需要替换的矩阵
Matrix& Matrix::ReplaceRow(int* index, int num, Matrix& mat)
{//检验插入矩阵大小与num保持一致if (mat.m_Row != num){std::cout << "Error: <ReplaceRow> num != mat.m_Row" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <ReplaceRow> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//当前矩阵列数应与mat列数一致if (this->m_Col != mat.m_Col){std::cout << "Error: <ReplaceRow> this->m_Col != mat.m_Col" << std::endl;return *this;}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < num; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[index[iRow]][iCol] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}Matrix& Matrix::ReplaceRow(std::vector<int> index, int num, Matrix& mat)
{//检验插入矩阵大小与num保持一致if (mat.m_Row != num){std::cout << "Error: <ReplaceRow> num != mat.m_Row" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Row){std::cout << "Error: <ReplaceRow> Input index[" << i << "] = " << index[i] << " >= m_Row" << std::endl;return *this;}}//当前矩阵列数应与mat列数一致if (this->m_Col != mat.m_Col){std::cout << "Error: <ReplaceRow> this->m_Col != mat.m_Col" << std::endl;return *this;}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < num; iRow++){for (int iCol = 0; iCol < resMat->m_Col; iCol++){resMat->m_Matrix[index[iRow]][iCol] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}//替换矩阵中的列 index中的列,num代表index的大小, mat是需要替换的矩阵
Matrix& Matrix::ReplaceCol(int* index, int num, Matrix& mat)
{//检验插入矩阵大小与num保持一致if (mat.m_Col != num){std::cout << "Error: <ReplaceCol> mat.m_Col != num" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Col){std::cout << "Error: <ReplaceCol> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//当前矩阵行数应与mat行数一致if (this->m_Row != mat.m_Row){std::cout << "Error: <ReplaceCol> this->m_Row != mat.m_Row" << std::endl;return *this;}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < num; iCol++){resMat->m_Matrix[iRow][index[iCol]] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}Matrix& Matrix::ReplaceCol(std::vector<int> index, int num, Matrix& mat)
{//检验插入矩阵大小与num保持一致if (mat.m_Col != num){std::cout << "Error: <ReplaceCol> mat.m_Col != num" << std::endl;return *this;}//检验数据有效性for (int i = 0; i < num; i++){//越界判定if (index[i] >= this->m_Col){std::cout << "Error: <ReplaceCol> Input index[" << i << "] = " << index[i] << " >= m_Col" << std::endl;return *this;}}//当前矩阵行数应与mat行数一致if (this->m_Row != mat.m_Row){std::cout << "Error: <ReplaceCol> this->m_Row != mat.m_Row" << std::endl;return *this;}//结果矩阵Matrix* resMat = new Matrix(*this);//加入元素for (int iRow = 0; iRow < resMat->m_Row; iRow++){for (int iCol = 0; iCol < num; iCol++){resMat->m_Matrix[iRow][index[iCol]] = mat.m_Matrix[iRow][iCol];}}return *resMat;
}//*****************矩阵初等变化***************//
Matrix& Matrix::SwapRow(int row0, int row1)
{//错误判定 越界if ((this->m_Row <= row0) || (this->m_Col <= row1)){std::cout << "Error: <SwapRow> Input row0 Or row1 More Than m_Row" << std::endl;return *this;}else if ((0 > row0) || (0 > row1)){std::cout << "Error: <SwapRow> Input row0 Or row1 Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//中转临时变量double temp = 0.0;for (int j = 0; j < resMat->m_Col; j++){temp = resMat->m_Matrix[row0][j];resMat->m_Matrix[row0][j] = resMat->m_Matrix[row1][j];resMat->m_Matrix[row1][j] = temp;}return*resMat;}
}Matrix& Matrix::SwapCol(int col0, int col1)
{//错误判定 越界if ((this->m_Col <= col0) || (this->m_Col <= col1)){std::cout << "Error: <SwapCol> Input col0 Or col1 More Than m_Col" << std::endl;return *this;}else if ((0 > col0) || (0 > col1)){std::cout << "Error: <SwapCol> Input col0 Or col1 Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//中转临时变量double temp = 0.0;for (int i = 0; i < resMat->m_Row; i++){temp = resMat->m_Matrix[i][col0];resMat->m_Matrix[i][col0] = resMat->m_Matrix[i][col1];resMat->m_Matrix[i][col1] = temp;}return*resMat;}
}//矩阵加法 某行 + 倍数*某行
Matrix& Matrix::AddRow(int rowLocal, int rowAdd, double rate)
{if ((this->m_Row <= rowLocal) || (this->m_Row <= rowAdd)){std::cout << "Error: <AddRow> Input rowLocal Or rowAdd More Than m_Row" << std::endl;return *this;}else if ((0 > rowLocal) || (0 > rowAdd)){std::cout << "Error: <AddRow> Input rowLocal Or rowAdd Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//指定行相加for (int j = 0; j < resMat->m_Col; j++){resMat->m_Matrix[rowLocal][j] += rate * resMat->m_Matrix[rowAdd][j];}return *resMat;}
}//矩阵加法 某列 + 倍数*某列
Matrix& Matrix::AddCol(int colLocal, int colAdd, double rate)
{if ((this->m_Col <= colLocal) || (this->m_Col <= colAdd)){std::cout << "Error: <AddCol> Input colLocal Or colAdd More Than m_Col" << std::endl;return *this;}else if ((0 > colLocal) || (0 > colAdd)){std::cout << "Error: <AddCol> Input colLocal Or colAdd Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//指定列相加for (int i = 0; i < resMat->m_Row; i++){resMat->m_Matrix[i][colLocal] += rate * resMat->m_Matrix[i][colAdd];}return *resMat;}
}//*******************矩阵加法*****************//
Matrix& Matrix::AddMat(Matrix& mat)
{Matrix* ResMat = new Matrix(*this);for (int i = 0; i < ResMat->m_Row; i++){for (int j = 0; j < ResMat->m_Col; j++){ResMat->m_Matrix[i][j] += mat.m_Matrix[i][j];}}return *ResMat;
}//*******************矩阵乘法*****************//
//矩阵数乘
Matrix& Matrix::MultNum(double num)
{//结果矩阵初始化Matrix* resMat = new Matrix(this->m_Row, this->m_Col);//乘后矩阵生成for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){resMat->m_Matrix[i][j] = num * this->m_Matrix[i][j];}}return *resMat;
}//运算符重载 矩阵数乘
Matrix& Matrix::operator*(double num)
{//结果矩阵初始化Matrix* resMat = new Matrix(this->m_Row, this->m_Col);//乘后矩阵生成for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){resMat->m_Matrix[i][j] = num * this->m_Matrix[i][j];}}return *resMat;
}//矩阵某行乘数值 行标从0开始计数
Matrix& Matrix::MultRow(double num, int row)
{if (this->m_Row <= row){std::cout << "Error: <MultRow> Input row More Than m_Row" << std::endl;return *this;}else if (0 > row){std::cout << "Error: <MultRow> Input row Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//乘后矩阵生成for (int j = 0; j < this->m_Col; j++){resMat->m_Matrix[row][j] = num * this->m_Matrix[row][j];}return *resMat;}}//矩阵某列乘数值 列标从0开始计数
Matrix& Matrix::MultCol(double num, int col)
{if (this->m_Col <= col){std::cout << "Error: <MultCol> Input col More Than m_Row" << std::endl;return *this;}else if (0 > col){std::cout << "Error: <MultCol> Input col Less 0" << std::endl;return *this;}else{//结果矩阵初始化Matrix* resMat = new Matrix(*this);//乘后矩阵生成for (int i = 0; i < this->m_Row; i++){resMat->m_Matrix[i][col] = num * this->m_Matrix[i][col];}return *resMat;}
}//矩阵相乘
Matrix& Matrix::MultMat(Matrix& inputMat)
{Matrix *resMat = new Matrix(this->m_Row, inputMat.m_Col);if (this->m_Col != inputMat.m_Row){std::cout << "Matrix Mult Error!" << std::endl;return *resMat;}else{for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < inputMat.m_Col; j++){for (int k = 0; k < this->m_Col; k++){resMat->m_Matrix[i][j] += this->m_Matrix[i][k] * inputMat.m_Matrix[k][j];}}}return *resMat;}
}//矩阵的行列式数值
double Matrix::Det()
{double res = 0.0;int sign = 1;if (this->m_Row != this->m_Col){//错误判定std::cout << "Error: <Det> Matrix Col != Row" << std::endl;return 0;}else if (this->m_Row <= 1){//程序终止出口return this->m_Matrix[0][0];}else{for (int i = 0; i < this->m_Col; i++){Matrix* temp = &(this->ChildMatrix(0, i));res += sign * this->m_Matrix[0][i] * (temp->Det());sign = -1*sign;delete temp;}}}//矩阵行列式顺序主子式 order阶数
double Matrix::Det(int order)
{if (this->m_Row != this->m_Col){//错误判定std::cout << "Error: <Det> Matrix Col != Row" << std::endl;return 0;}else if (order < 0){std::cout << "Error: <Det> Input Order Less 0" << std::endl;return 0;}else if (order >= this->m_Row){std::cout << "Error: <Det> Input Order More Than Row" << std::endl;return 0;}else{Matrix tempMat(order + 1, order + 1);for (int i = 0; i < tempMat.m_Col; i++){for (int j = 0; j < tempMat.m_Row; j++){tempMat.m_Matrix[i][j] = this->m_Matrix[i][j];}}return tempMat.Det();}
}//求解余子式
Matrix& Matrix::ChildMatrix(int row, int col)
{if (this->m_Row != this->m_Col){std::cout << "Error: <ChildMatrix> Matrix row != col" << std::endl;return *this;}else if (this->m_Row <= 1){std::cout << "Error: <ChildMatrix> Matrix Row Less 1 " << std::endl;return *this;}else if ((row > this->m_Row) || (col > this->m_Col)){std::cout << "Error: <ChildMatrix> Input Row Or Col More Than Matix Max Row Or Col" << std::endl; return* this; }else{Matrix* resMat = new Matrix(this->m_Row-1, this->m_Col-1);for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){if ((i < row) && (j < col))resMat->m_Matrix[i][j] = this->m_Matrix[i][j];else if((i > row) && (j < col))resMat->m_Matrix[i-1][j] = this->m_Matrix[i][j];else if((i < row) && (j > col))resMat->m_Matrix[i][j - 1] = this->m_Matrix[i][j];else if((i > row) && (j > col))resMat->m_Matrix[i - 1][j - 1] = this->m_Matrix[i][j];}}return *resMat;}
}//列主消元处理为上三角矩阵
double Matrix::DetRow()
{//交换标志位 1代表偶数次交换 -1代表奇数次交换int flagShift = 1;//本矩阵Matrix *localMat = new Matrix(*this);//行列式数值double resDet = 1.0;//*******************通过交换 num1*i + num2*j 实现下三角为0***************//for (int i = 0; i < localMat->m_Row - 1; i++){//记录最大行所在行标int tempMaxRow = i;for (int i1 = i + 1; i1 < localMat->m_Row; i1++){if (abs(localMat->m_Matrix[i1][i]) > abs(localMat->m_Matrix[tempMaxRow][i])){tempMaxRow = i1;}}if (tempMaxRow != i){//std::cout << i << " 行交换" << tempMaxRow << " 行" << std::endl;//进行交换 将当前第i行与第tempMaxRow行进行互换 初等行变换*localMat = localMat->SwapRow(i, tempMaxRow);//记录交换次数flagShift = -flagShift;//localMat->PrintMat();}//此对角线以下的元素通过初等变化为0for (int i2 = i + 1; i2 < localMat->m_Row; i2++){if (localMat->m_Matrix[i2][i] != 0){//std::cout << "<" << localMat->m_Matrix[i][i] << "> *" << i2 << " 行 + <" << -1.0 * (localMat->m_Matrix[i2][i]) << "> *" << i << " 行" << std::endl;*localMat = localMat->AddRow(i2, i, -1.0 * (localMat->m_Matrix[i2][i]) / localMat->m_Matrix[i][i]);//localMat->PrintMat();}}}//计算行列式数值 对角线相乘for (int i = 0; i < localMat->m_Row; i++){resDet = resDet * localMat->m_Matrix[i][i];}//矩阵交换一次就会变号resDet = flagShift * resDet;//清理localMatrixdelete localMat;return resDet;
}//矩阵求逆
Matrix& Matrix::Inverse()
{if (abs(this->DetRow()) < MIN_DET){std::cout << "Error: <Inverse> Matrix Det Near 0" << std::endl;return *this;}else{Matrix* resMat = new Matrix(this->m_Row, this->m_Col);for (int i = 0; i < this->m_Row; i++){for (int j = 0; j < this->m_Col; j++){Matrix* temp = &(this->ChildMatrix(j, i));resMat->m_Matrix[i][j] = pow(-1.0, (i + j)) / this->DetRow() * (temp->DetRow());delete temp;}}return *resMat;}
}//矩阵求逆 行初等变化
Matrix& Matrix::InverseRow()
{//错误判断if (abs(this->DetRow()) < MIN_DET){std::cout << "Error: <InverseRow> Matrix Det Near 0" << std::endl;return *this;}else if (this->m_Row <= 1){std::cout << "Error: <InverseRow> Size Less 2" << std::endl;return *this;}else{//单位矩阵 与带转换矩阵维度相同的Matrix uint = this->Uint();//结果矩阵 逆矩阵 初始状态与本矩阵相同 为不使本矩阵发生改变Matrix temp(this->m_Row, this->m_Col);Matrix* resMat = new Matrix(temp.Uint());//本矩阵Matrix localMat(*this);//*******************通过交换 num1*i + num2*j 实现下三角为0***************//for (int i = 0; i < localMat.m_Row - 1; i++){//记录最大行所在行标int tempMaxRow = i;for (int i1 = i + 1; i1 < localMat.m_Row; i1++){if (abs(localMat.m_Matrix[i1][i]) > abs(localMat.m_Matrix[tempMaxRow][i])){tempMaxRow = i1;}}if (tempMaxRow != i){//std::cout << i << " 行交换" << tempMaxRow << " 行" << std::endl;//进行交换 将当前第i行与第tempMaxRow行进行互换 初等行变换localMat = localMat.SwapRow(i, tempMaxRow);*resMat = resMat->SwapRow(i, tempMaxRow);//localMat.PrintMat();}//此对角线以下的元素通过初等变化为0for (int i2 = i + 1; i2 < localMat.m_Row; i2++){if (localMat.m_Matrix[i2][i] != 0){//std::cout << "<" << localMat.m_Matrix[i][i] << "> *" << i2 << " 行 + <" << -1.0 * (localMat.m_Matrix[i2][i]) << "> *" << i << " 行" << std::endl;*resMat = resMat->AddRow(i2, i, -1.0 * (localMat.m_Matrix[i2][i]) / localMat.m_Matrix[i][i]);localMat = localMat.AddRow(i2, i, -1.0 * (localMat.m_Matrix[i2][i]) / localMat.m_Matrix[i][i]);//localMat.PrintMat();}}}//错误判断if (localMat.m_Matrix[localMat.m_Row - 1][localMat.m_Col - 1] == 0){std::cout << "Error: <InverseRow> marix[" << localMat.m_Row - 1 << "][" << localMat.m_Col - 1 <<"] == 0" << std::endl;return *this;}//*******************通过 num1*i + num2*j 实现上三角为0***************//for (int i = localMat.m_Row - 1; i > 0; i--){for (int i2 = i - 1; i2 >= 0; i2--){if (localMat.m_Matrix[i2][i] != 0){//std::cout << "<" << localMat.m_Matrix[i][i] << "> *" << i2 << " 行 + <" << -1.0 * (localMat.m_Matrix[i2][i]) << "> *" << i << " 行" << std::endl;*resMat = resMat->AddRow(i2, i, -1.0 * (localMat.m_Matrix[i2][i]) / localMat.m_Matrix[i][i]);localMat = localMat.AddRow(i2, i, -1.0 * (localMat.m_Matrix[i2][i]) / localMat.m_Matrix[i][i]);//localMat.PrintMat();}}}//*******************通过 i*num 实现矩阵为单位矩阵***************//for (int i = 0; i < localMat.m_Row; i++){if (localMat.m_Matrix[i][i] == 0){std::cout << "Error: <InverseRow> matrix[" << i << "]" << "[" << i << "] == 0" << std::endl;return *this;}else{//std::cout << "<" << 1 / localMat.m_Matrix[i][i] << "> *" << i << " 行" << std::endl;*resMat = resMat->MultRow(1 / localMat.m_Matrix[i][i], i);localMat = localMat.MultRow(1 / localMat.m_Matrix[i][i], i);//localMat.PrintMat();}}return *resMat;}
}//矩阵求逆 下三角矩阵
Matrix& Matrix::InverseDownTriangle()
{//错误判断 方阵检测if (this->m_Row != this->m_Col){std::cout << "Error: <InverseDownTriangle> Matrix Col != Row" << std::endl;return *this;}//下三角求逆Matrix* resMat = new Matrix(*this);for (int i = 0; i < resMat->m_Row; i++){for (int j = 0; j <= i; j++){//分段求解 对角线为倒数if (i == j){resMat->m_Matrix[i][j] = 1 / resMat->m_Matrix[i][j];}else{//分段求解 非对角线元素 double tempSum = 0.0;for (int k = j; k <= i - 1; k++){tempSum += resMat->m_Matrix[i][k] * resMat->m_Matrix[k][j];}resMat->m_Matrix[i][j] = -1.0*tempSum / resMat->m_Matrix[i][i];}}}return *resMat;}//矩阵求逆 上三角矩阵
Matrix& Matrix::InverseUpTriangle()
{//错误判断 方阵检测if (this->m_Row != this->m_Col){std::cout << "Error: <InverseUpTriangle> Matrix Col != Row" << std::endl;return *this;}//上三角求逆Matrix* resMat = new Matrix(*this);for (int j = resMat->m_Col-1; j >=0; j--){for (int i = j; i >=0; i--){//分段求解 对角线为倒数if (i == j){resMat->m_Matrix[i][j] = 1 / resMat->m_Matrix[i][j];}else{//分段求解 非对角线元素 double tempSum = 0.0;for (int k = j; k >= i+1; k--){tempSum += resMat->m_Matrix[i][k] * resMat->m_Matrix[k][j];}resMat->m_Matrix[i][j] = -1.0 * tempSum / resMat->m_Matrix[i][i];}}}return *resMat;
}//矩阵LU分解 顺序分解 对于病态矩阵可能存在精度问题
void Matrix::ResolveLU(Matrix& LMat, Matrix& UMat)
{if (this->m_Col != this->m_Row){std::cout << "Error: <ResolveLU> Is Not Square Matrix" << std::endl;return;}//存在性判定 顺序主子式不为0for (int i = 0; i < this->m_Row; i++){if (this->Det(i) == 0){std::cout << "Error: <ResolveLU> order Det = 0" << std::endl;return;}}//LU 分解//L矩阵为单位矩阵LMat = this->Uint();//U矩阵初始化为空矩阵Matrix temp(this->m_Row, this->m_Col);UMat = temp;for (int i = 0; i < this->m_Row; i++){//计算Ufor (int j1 = i; j1 < this->m_Col; j1++){double tempSum1 = 0.0;if (i != 0){for (int j2 = 0; j2 <= i - 1; j2++){tempSum1 += LMat.m_Matrix[i][j2] * UMat.m_Matrix[j2][j1];}}UMat.m_Matrix[i][j1] = this->m_Matrix[i][j1] - tempSum1;}//计算Lfor (int i1 = i; i1 < this->m_Row; i1++){double tempSum2 = 0.0;if (i != 0){for (int j2 = 0; j2 <= i - 1; j2++){tempSum2 += LMat.m_Matrix[i1][j2] * UMat.m_Matrix[j2][i];}}LMat.m_Matrix[i1][i] = (this->m_Matrix[i1][i] - tempSum2)/UMat.m_Matrix[i][i];}}}//矩阵的LUP分解 P*A = L*U 添加了列主消元功能
//L为主对角线元素为1的下三角矩阵 U为上二角矩阵 P为行交换矩阵 P*A=L*U
void Matrix::ResolveLUP(Matrix& LMat, Matrix& UMat, Matrix& PMat)
{//条件判断 矩阵行列式不为0if (this->Det() == 0){std::cout << "Error: <ResolveLUP> Can't Resolve Matrix To L U P" << std::endl;return;}//初始化 L U PLMat = this->Uint();PMat = this->Uint();UMat = *this;//进行分解计算for (int i = 0; i < UMat.m_Row - 1; i++){//记录最大行所在行标int tempMaxRow = i;for (int i1 = i + 1; i1 < UMat.m_Row; i1++){if (abs(UMat.m_Matrix[i1][i]) > abs(UMat.m_Matrix[tempMaxRow][i])){tempMaxRow = i1;}}//进行交换 将当前第i行与第tempMaxRow行进行互换 初等行变换UMat = UMat.SwapRow(i, tempMaxRow);//L矩阵做出对应交换 先交换<itempMaxRow>列再交换<itempMaxRow>行LMat = LMat.SwapCol(i, tempMaxRow);LMat = LMat.SwapRow(i, tempMaxRow);//P矩阵做出对应变换 交换<itempMaxRow>行PMat = PMat.SwapRow(i, tempMaxRow);//高斯消元 V矩阵消除下三角区域,L矩阵添加下三角区域for (int i1 = i + 1; i1 < UMat.m_Row; i1++){//记录消元系数double deleteVar = UMat.m_Matrix[i1][i] / UMat.m_Matrix[i][i];//L矩阵列填充LMat.m_Matrix[i1][i] = deleteVar;//U矩阵列消除UMat = UMat.MultRow(UMat.m_Matrix[i][i], i1).AddRow(i1, i, -1.0 * UMat.m_Matrix[i1][i]).MultRow(1 / UMat.m_Matrix[i][i], i1);}}return;
}