Linux测试处理fps为30、1920*1080、一分钟的视频性能

前置条件

模拟fps为30、1920*1080、一分钟的视频

项目CMakeLists.txt

cmake_minimum_required(VERSION 3.30)
project(testOpenGl)set(CMAKE_CXX_STANDARD 11)add_executable(testOpenGl main.cpptestOpenCl.cpptestOpenCl.hTestCpp.cppTestCpp.hTestCppThread.cppTestCppThread.hTestSIMD.cppTestSIMD.h)# 查找OpenCL
find_package(OpenCL REQUIRED)# 链接OpenCl库
target_include_directories(testOpenGl PRIVATE ${OpenCL_INCLUDE_DIRS})
target_link_libraries(testOpenGl PRIVATE ${OpenCL_LIBRARIES})# 检测SIMD支持并添加编译选项
include(CheckCXXCompilerFlag)check_cxx_compiler_flag("-mavx" COMPILER_SUPPORTS_AVX)
check_cxx_compiler_flag("-mavx2" COMPILER_SUPPORTS_AVX2)if(COMPILER_SUPPORTS_AVX2)target_compile_options(testOpenGl PRIVATE -mavx2)
elseif (COMPILER_SUPPORTS_AVX)target_compile_options(testOpenGl PRIVATE -mavx)
else ()message(FATAL_ERROR "AVX or AVX2 is not supported by compiler")
endif ()

C++代码

//
// Created by lai on 2025/1/17.
//#include "TestCpp.h"#include <iostream>
#include <vector>
#include <random>
#include <chrono>// 灰度转换函数
void to_gray(const std::vector<unsigned char>& input, std::vector<unsigned char>& output, int width, int height) {for (int i = 0; i < width * height; ++i) {int offset = i * 3;  // RGB 分量unsigned char r = input[offset];unsigned char g = input[offset + 1];unsigned char b = input[offset + 2];// 灰度公式output[i] = static_cast<unsigned char>(0.299f * r + 0.587f * g + 0.114f * b);}
}
void TestCpp::runTest() {const int width = 1920;         // 视频宽度const int height = 1080;        // 视频高度const int fps = 30;             // 帧率const int duration = 60;        // 视频持续时间(秒)const int frameCount = fps * duration; // 总帧数// 模拟视频帧数据:随机生成每帧的 RGB 数据std::vector<unsigned char> inputFrame(width * height * 3);std::vector<unsigned char> outputFrame(width * height);std::random_device rd;std::mt19937 gen(rd());std::uniform_int_distribution<> dis(0, 255);// 开始处理auto startTime = std::chrono::high_resolution_clock::now();for (int frame = 0; frame < frameCount; ++frame) {// 随机生成模拟的 RGB 数据for (auto& pixel : inputFrame) {pixel = dis(gen);}// 调用灰度转换函数to_gray(inputFrame, outputFrame, width, height);// 打印进度if (frame % 30 == 0) {std::cout << "Processed frame: " << frame + 1 << "/" << frameCount << std::endl;}}auto endTime = std::chrono::high_resolution_clock::now();double elapsedTime = std::chrono::duration<double>(endTime - startTime).count();// 打印处理时间std::cout << "Processed " << frameCount << " frames in " << elapsedTime << " seconds." << std::endl;std::cout << "Average time per frame: " << (elapsedTime / frameCount) << " seconds." << std::endl;}

C++多线程

//
// Created by lai on 2025/1/17.
//#include "TestCppThread.h"#include <iostream>
#include <vector>
#include <random>
#include <chrono>
#include <thread>// 灰度转换函数,每个线程处理一部分图像
void to_gray_chunk(const std::vector<unsigned char>& input, std::vector<unsigned char>& output, int width, int height, int start, int end) {for (int i = start; i < end; ++i) {int offset = i * 3;  // RGB 分量unsigned char r = input[offset];unsigned char g = input[offset + 1];unsigned char b = input[offset + 2];// 灰度公式output[i] = static_cast<unsigned char>(0.299f * r + 0.587f * g + 0.114f * b);}
}void TestCppThread::runTest() {const int width = 1920;         // 视频宽度const int height = 1080;        // 视频高度const int fps = 30;             // 帧率const int duration = 60;        // 视频持续时间(秒)const int frameCount = fps * duration; // 总帧数const int numThreads = std::thread::hardware_concurrency(); // 获取可用线程数// 模拟视频帧数据:随机生成每帧的 RGB 数据std::vector<unsigned char> inputFrame(width * height * 3);std::vector<unsigned char> outputFrame(width * height);std::random_device rd;std::mt19937 gen(rd());std::uniform_int_distribution<> dis(0, 255);// 开始处理auto startTime = std::chrono::high_resolution_clock::now();for (int frame = 0; frame < frameCount; ++frame) {// 随机生成模拟的 RGB 数据for (auto& pixel : inputFrame) {pixel = dis(gen);}// 启动多个线程来处理图像std::vector<std::thread> threads;int chunkSize = width * height / numThreads; // 每个线程处理的像素块大小for (int t = 0; t < numThreads; ++t) {int start = t * chunkSize;int end = (t == numThreads - 1) ? (width * height) : (start + chunkSize); // 最后一个线程处理剩余的像素threads.emplace_back(to_gray_chunk, std::cref(inputFrame), std::ref(outputFrame), width, height, start, end);}// 等待所有线程完成for (auto& t : threads) {t.join();}// 打印进度if (frame % 30 == 0) {std::cout << "Processed frame: " << frame + 1 << "/" << frameCount << std::endl;}}auto endTime = std::chrono::high_resolution_clock::now();double elapsedTime = std::chrono::duration<double>(endTime - startTime).count();// 打印处理时间std::cout << "Processed " << frameCount << " frames in " << elapsedTime << " seconds." << std::endl;std::cout << "Average time per frame: " << (elapsedTime / frameCount) << " seconds." << std::endl;}

CPU版本的Opencl

cmake中添加

# 查找OpenCL
find_package(OpenCL REQUIRED)# 链接OpenCl库
target_include_directories(testOpenGl PRIVATE ${OpenCL_INCLUDE_DIRS})
target_link_libraries(testOpenGl PRIVATE ${OpenCL_LIBRARIES})

测试代码

//
// Created by lai on 2025/1/16.
//
#include "testOpenCl.h"#include <chrono>
#include <CL/cl.h>
#include <iostream>
#include <vector>
#include <random>// OpenCL 内核代码
const char* kernelSource = R"(
__kernel void to_gray(__global unsigned char* input,__global unsigned char* output,const int width,const int height)
{int id = get_global_id(0);  // 每个线程处理一个像素if (id < width * height) {int offset = id * 3;  // RGB 分量unsigned char r = input[offset];unsigned char g = input[offset + 1];unsigned char b = input[offset + 2];// 灰度公式output[id] = (unsigned char)(0.299f * r + 0.587f * g + 0.114f * b);}
}
)";
void TestOpenCl::runTests() {const int width = 1920;         // 视频宽度const int height = 1080;        // 视频高度const int fps = 30;             // 帧率const int duration = 60;        // 视频持续时间(秒)const int frameCount = fps * duration; // 总帧数// 模拟视频帧数据:随机生成每帧的 RGB 数据std::vector<unsigned char> inputFrame(width * height * 3);std::vector<unsigned char> outputFrame(width * height);std::random_device rd;std::mt19937 gen(rd());std::uniform_int_distribution<> dis(0, 255);// 初始化 OpenCLcl_int err;cl_platform_id platform;clGetPlatformIDs(1, &platform, nullptr);cl_device_id device;clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, 1, &device, nullptr);cl_context context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &err);cl_command_queue queue = clCreateCommandQueue(context, device, 0, &err);cl_program program = clCreateProgramWithSource(context, 1, &kernelSource, nullptr, &err);clBuildProgram(program, 1, &device, nullptr, nullptr, nullptr);cl_kernel kernel = clCreateKernel(program, "to_gray", &err);// 创建 OpenCL 缓冲区cl_mem inputBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY, inputFrame.size(), nullptr, &err);cl_mem outputBuffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY, outputFrame.size(), nullptr, &err);// 开始处理auto startTime = std::chrono::high_resolution_clock::now();for (int frame = 0; frame < frameCount; ++frame) {// 随机生成模拟的 RGB 数据for (auto& pixel : inputFrame) {pixel = dis(gen);}// 写入数据到 OpenCL 缓冲区clEnqueueWriteBuffer(queue, inputBuffer, CL_TRUE, 0, inputFrame.size(), inputFrame.data(), 0, nullptr, nullptr);// 设置内核参数clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputBuffer);clSetKernelArg(kernel, 1, sizeof(cl_mem), &outputBuffer);clSetKernelArg(kernel, 2, sizeof(int), &width);clSetKernelArg(kernel, 3, sizeof(int), &height);// 定义工作区大小size_t globalSize = width * height;// 执行内核clEnqueueNDRangeKernel(queue, kernel, 1, nullptr, &globalSize, nullptr, 0, nullptr, nullptr);// 读取处理后的灰度数据clEnqueueReadBuffer(queue, outputBuffer, CL_TRUE, 0, outputFrame.size(), outputFrame.data(), 0, nullptr, nullptr);// 打印进度if (frame % 30 == 0) {std::cout << "Processed frame: " << frame + 1 << "/" << frameCount << std::endl;}}auto endTime = std::chrono::high_resolution_clock::now();double elapsedTime = std::chrono::duration<double>(endTime - startTime).count();// 打印处理时间std::cout << "Processed " << frameCount << " frames in " << elapsedTime << " seconds." << std::endl;std::cout << "Average time per frame: " << (elapsedTime / frameCount) << " seconds." << std::endl;// 释放 OpenCL 资源clReleaseMemObject(inputBuffer);clReleaseMemObject(outputBuffer);clReleaseKernel(kernel);clReleaseProgram(program);clReleaseCommandQueue(queue);clReleaseContext(context);
}

内存对齐的SIMD指令集

cmake添加

# 检测SIMD支持并添加编译选项
include(CheckCXXCompilerFlag)check_cxx_compiler_flag("-mavx" COMPILER_SUPPORTS_AVX)
check_cxx_compiler_flag("-mavx2" COMPILER_SUPPORTS_AVX2)if(COMPILER_SUPPORTS_AVX2)target_compile_options(testOpenGl PRIVATE -mavx2)
elseif (COMPILER_SUPPORTS_AVX)target_compile_options(testOpenGl PRIVATE -mavx)
else ()message(FATAL_ERROR "AVX or AVX2 is not supported by compiler")
endif ()
//
// Created by lai on 2025/1/17.
//#include "TestSIMD.h"#include <iostream>
#include <vector>
#include <random>
#include <chrono>
#include <immintrin.h> // SIMD 指令集
#include <cstdlib>  // 用于posix_memalignvoid to_gray_simd(const unsigned char* input, unsigned char* output, int width, int height) {const int pixelCount = width * height;const __m256 scale_r = _mm256_set1_ps(0.299f); // 红色通道的权重const __m256 scale_g = _mm256_set1_ps(0.587f); // 绿色通道的权重const __m256 scale_b = _mm256_set1_ps(0.114f); // 蓝色通道的权重int i = 0;for (; i <= pixelCount - 8; i += 8) {// 加载 8 组 RGB 像素__m256i pixel_r = _mm256_loadu_si256((__m256i*)&input[i * 3]);  // 确保内存对齐__m256i pixel_g = _mm256_loadu_si256((__m256i*)&input[i * 3 + 1]);__m256i pixel_b = _mm256_loadu_si256((__m256i*)&input[i * 3 + 2]);// 转换为浮点数以便计算__m256 r_f = _mm256_cvtepi32_ps(pixel_r);__m256 g_f = _mm256_cvtepi32_ps(pixel_g);__m256 b_f = _mm256_cvtepi32_ps(pixel_b);// 灰度转换公式__m256 gray_f = _mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(r_f, scale_r), _mm256_mul_ps(g_f, scale_g)),_mm256_mul_ps(b_f, scale_b));// 转回整数__m256i gray_i = _mm256_cvtps_epi32(gray_f);// 存储结果_mm256_storeu_si256((__m256i*)&output[i], gray_i);}// 处理剩余像素(非对齐部分)for (; i < pixelCount; ++i) {int offset = i * 3;unsigned char r = input[offset];unsigned char g = input[offset + 1];unsigned char b = input[offset + 2];output[i] = static_cast<unsigned char>(0.299f * r + 0.587f * g + 0.114f * b);}
}void TestSIMD::runTest() {const int width = 1920;         // 视频宽度const int height = 1080;        // 视频高度const int fps = 30;             // 帧率const int duration = 60;        // 视频持续时间(秒)const int frameCount = fps * duration; // 总帧数size_t size = width * height * 3 * sizeof(unsigned char);// 模拟视频帧数据:随机生成每帧的 RGB 数据// 使用posix_memalign分配对齐内存unsigned char* inputFrame;unsigned char* outputFrame;int alignment = 32; // 使用32字节对齐int resultInput = posix_memalign((void**)&inputFrame, alignment, size);int resultOutput = posix_memalign((void**)&outputFrame, alignment, size);if (resultInput != 0 || resultOutput != 0) {std::cerr << "memory allocation failed" << std::endl;return;}std::random_device rd;std::mt19937 gen(rd());std::uniform_int_distribution<> dis(0, 255);// 开始处理auto startTime = std::chrono::high_resolution_clock::now();for (int frame = 0; frame < frameCount; ++frame) {// 随机生成模拟的 RGB 数据for (int i = 0; i < width * height * 3; ++i) {inputFrame[i] = dis(gen);}// 使用 SIMD 转换灰度to_gray_simd(inputFrame, outputFrame, width, height);// 打印进度if (frame % 30 == 0) {std::cout << "Processed frame: " << frame + 1 << "/" << frameCount << std::endl;}}auto endTime = std::chrono::high_resolution_clock::now();double elapsedTime = std::chrono::duration<double>(endTime - startTime).count();// 打印处理时间std::cout << "Processed " << frameCount << " frames in " << elapsedTime << " seconds." << std::endl;std::cout << "Average time per frame: " << (elapsedTime / frameCount) << " seconds." << std::endl;
}

结论

C++
Processed 1800 frames in 251.789 seconds.
Average time per frame: 0.139883 seconds.C++ thread
Processed 1800 frames in 229.571 seconds.
Average time per frame: 0.12754 seconds.CPU版本POCL的OPENCL
Processed 1800 frames in 233.25 seconds.
Average time per frame: 0.129583 seconds.SIMD 内存对齐以后
Processed 1800 frames in 191.015 seconds.
Average time per frame: 0.106119 seconds.

SIMD的性能明显由于其他几项,但是还需要测试GPU版本的OPencl和多线程指令集优化对性能的提升

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/67416.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch二次开发:实现实时定时同步同义词、近义词与停用词

Elasticsearch二次开发&#xff1a;实现实时定时同步同义词、近义词与停用词 引言 Elasticsearch&#xff08;ES&#xff09;作为开源搜索引擎的典范&#xff0c;以其强大的全文搜索、结构化搜索以及分析能力&#xff0c;在各个领域得到了广泛应用。在复杂的搜索场景中&#…

LeetCode_438.找到字符串中所有字母异位词

给定两个字符串 s 和 p&#xff0c;找到 s 中所有 p 的 异位词 的子串&#xff0c;返回这些子串的起始索引。不考虑答案输出的顺序。 示例 1: 输入: s "cbaebabacd", p "abc" 输出: [0,6] 解释: 起始索引等于 0 的子串是 "cba", 它是 "a…

服务器迁移MySQL

由于公司原有的服务器不再使用&#xff0c;需要将老的服务器上的MySQL迁移到新的服务器上&#xff0c;因此需要对数据进行备份迁移&#xff0c;前提是两台服务器已安装相同版本的MySQL&#xff0c;这里就不再讲解MySQL的安装步骤了&#xff0c;可以安装包、可以在线下载、可以容…

前端【3】--CSS布局,CSS实现横向布局,盒子模型

盒子分类 1、块级盒子 2、内联级盒子 3、内联块级盒子 4、弹性盒子 5、盒子内部分区 方法一&#xff1a;使用 float 普通盒子实现横向布局 方法二&#xff1a;使用 display: inline-block 内联块级元素实现横向布局 方法三&#xff1a;使用弹性盒子 flexbox&#xff0…

uni-simple-router史上最全使用方法教程

在 uni-app 项目中&#xff0c;随着应用的复杂度增加&#xff0c;传统的路由管理方式可能无法满足需求&#xff0c;尤其是在多页面和权限控制等场景下。这时&#xff0c;使用像 uni-simple-router 这样的路由管理库可以简化开发流程&#x1f44d;&#xff0c;如权限控制、路由守…

Android SystemUI——NavigationBar导航栏(七)

前面的文章我们分析了状态栏 StatusBar 的构建流程,而导航栏 NavigationBar 其实是状态栏的一种,也是在 StatusBar 中被创建的,这里我们来看一下与其相近的导航栏 NavigationBar 的窗口的创建过程。 一、导航栏窗口 对于导航栏 NavigationBar 窗口创建,前面的流程与 Statu…

Mockito+PowerMock+Junit单元测试

一、单元测试用途 1、日常开发团队要求规范&#xff0c;需要对开发需求代码进行单元测试并要求行覆盖率达到要求&#xff0c;DevOps流水线也会开设相关门禁阀值阻断代码提交&#xff0c;一般新增代码行覆盖率80%左右。 二、Mock测试介绍 1、Mock是为了解决不同的单元之间由于…

分频器code

理论学习 数字电路中时钟占有非常重要的地位。时间的计算都依靠时钟信号作为基本单元。一般而言&#xff0c;一块板子只有一个晶振&#xff0c;即只有一种频率的时钟&#xff0c;但是数字系统中&#xff0c;经常需要对基准时钟进行不同倍数的分频&#xff0c;进而得到各模块所需…

Ubuntu上,ffmpeg如何使用cuda硬件解码、编码、转码加速

本文使用 Ubuntu 环境。Ubuntu 直接使用 APT 安装的就支持 CUDA 加速。本文使用这样下载的版本进行演示&#xff0c;你自己编译或者其他源的版本可能会不同。 ffmpeg 的一些介绍&#xff0c;以及 macOS 版本的 ffmpeg 硬件加速请见《macOS上如何安装&#xff08;不需要编译安装…

WPS计算机二级•高效操作技巧

听说这里是目录哦 斜线表头 展示项目名称&#x1f34b;‍&#x1f7e9;横排转竖排&#x1f350;批量删除表格空白行&#x1f348;方法一方法二建辅助列找空值 能量站&#x1f61a; 斜线表头 展示项目名称&#x1f34b;‍&#x1f7e9; 选中单元格&#xff0c;单击右键➡️“设…

【Linux系列】查看服务器是否使用了 SSD 的多种方法

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

unity2022以上导出到AndroidStudio后更新步骤

1、unity里面Export出unityLibrary 2、导出apk&#xff0c;里面才包含libil2cpp(新版unity无法直接导出libil2cpp 3、注释AS项目app下的build.gradle里面包含unityLibrary的代码 4、注释AS项目settings.gradle包含unityLibrary的代码 5、删除AS项目里面的unityLibrary文件夹 6、…

Bash语言的函数实现

Bash语言的函数实现 Bash&#xff08;Bourne Again SHell&#xff09;是一种流行的命令行解释器&#xff0c;用于Unix和类Unix操作系统。它不仅支持命令行操作&#xff0c;还能通过脚本语言进行编程。函数是Bash脚本编程中的一个重要概念&#xff0c;可以帮助我们组织代码、提…

挖掘机检测数据集,准确识别率91.0%,4327张原始图片,支持YOLO,COCO JSON,PASICAL VOC XML等多种格式标注

挖掘机检测数据集&#xff0c;准确识别率91.0%&#xff0c;4327张图片&#xff0c;支持YOLO&#xff0c;COCO JSON&#xff0c;PASICAL VOC XML等多种格式标注 数据集详情 数据集分割 训练组70&#xff05; 3022图片 有效集20&#xff05; 870图片 测试集10&…

Android15源码编译问题处理

最近想在Raspberry Pi5上面运行自己编译的Android15镜像,参考如下链接来处理: GitHub - raspberry-vanilla/android_local_manifest GitHub - raspberry-vanilla/android_kernel_manifest 代码同步完后,编译就出问题了,总是提示: FAILED: analyzing Android.bp files and…

【框架篇】Spring MVC 介绍及使用(详细教程)

Spring MVC 介绍 1&#xff0c;MVC 设计模式 MVC&#xff08;Model-View-Controller&#xff09;是一种常见的软件设计模式&#xff0c;用于将应用程序的逻辑分离成三个独立的组件&#xff1a; 模型&#xff08;Model&#xff09;&#xff1a;模型是应用程序的数据和业务逻辑…

Spring Boot中的自动配置原理是什么

Spring Boot 自动配置原理 Spring Boot 的自动配置机制基于 条件化配置&#xff0c;通过 EnableAutoConfiguration 注解来启用。自动配置的核心原理是 基于类路径和环境条件来推断所需要的配置&#xff0c;Spring Boot 会根据项目中引入的依赖和当前环境来自动装配相关的配置项…

管理口令安全和资源(一)

学习目标 Manage passwords using profiles: 使用配置文件&#xff08;profiles&#xff09;来管理密码。这意味着你应该能够设置和修改密码策略&#xff0c;比如密码的复杂性、有效期、尝试次数限制等。在Oracle数据库中&#xff0c;配置文件是一组可以应用于所有用户的预定义…

qt vs ios开发应用环境搭建和上架商店的记录

qt 下载链接如下 https://download.qt.io/new_archive/qt/5.14/5.14.2/qt-opensource-mac-x64-5.14.2.dmg 安装选项全勾选就行&#xff0c;这里特别说明下qt5.14.2/qml qt5.14.2对qml支持还算成熟&#xff0c;但很多特性还得qt6才行&#xff0c;这里用qt5.14.2主要是考虑到服…

windows 极速安装 Linux (Ubuntu)-- 无需虚拟机

1. 安装 WSL 和 Ubuntu 打开命令行&#xff0c;执行 WSL --install -d ubuntu若报错&#xff0c;则先执行 WSL --update2. 重启电脑 因安装了子系统&#xff0c;需重启电脑才生效 3. 配置 Ubuntu 的账号密码 打开 Ubuntu 的命令行 按提示&#xff0c;输入账号&#xff0c;密…