linux 双向链表

kimi 输出双向链表

双向链表是:struct {xxx,list node}
每个 node 指向下一个结构体的 node 信息

#include <stdio.h>
#include <stdlib.h>
#include <string.h>// 定义双向链表节点结构体
struct list_head {struct list_head *next, *prev;
};// 初始化双向链表头节点
#define LIST_HEAD_INIT(name) { &(name), &(name) }// 定义双向链表头节点
#define LIST_HEAD(name) \struct list_head name = LIST_HEAD_INIT(name)// 初始化双向链表头节点的函数
static inline void INIT_LIST_HEAD(struct list_head *list)
{list->next = list;list->prev = list;
}// 内部函数,用于将新节点插入到指定位置
static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next)
{next->prev = new;new->next = next;new->prev = prev;prev->next = new;
}// 将新节点添加到链表头部
static inline void list_add(struct list_head *new, struct list_head *head)
{__list_add(new, head, head->next);
}// 将新节点添加到链表尾部
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{__list_add(new, head->prev, head);
}// 内部函数,用于删除节点的连接关系
static inline void __list_del(struct list_head *prev, struct list_head *next)
{next->prev = prev;prev->next = next;
}// 删除链表中的节点
static inline void list_del(struct list_head *entry)
{__list_del(entry->prev, entry->next);entry->next = NULL;entry->prev = NULL;
}// 判断链表是否为空
static inline int list_empty(const struct list_head *head)
{return head->next == head;
}// 获取链表中第一个节点的指针
#define list_first_entry(ptr, type, member) \list_entry((ptr)->next, type, member)// 获取链表中最后一个节点的指针
#define list_last_entry(ptr, type, member) \list_entry((ptr)->prev, type, member)// 获取当前节点的下一个节点的指针
#define list_next_entry(pos, member) \list_entry((pos)->member.next, typeof(*(pos)), member)// 获取当前节点的上一个节点的指针
#define list_prev_entry(pos, member) \list_entry((pos)->member.prev, typeof(*(pos)), member)// 根据成员变量的指针获取包含该成员变量的结构体的指针
#define list_entry(ptr, type, member) \((type *)((char *)(ptr) - (unsigned long)(&((type *)0)->member)))// 遍历双向链表的宏: 遍历的时候:根据node指针➕node在结构体中的偏移 来确定包含node的结构体指针
#define LIST_FOR_EACH_ENTRY(pos, head, member) \for (pos = list_first_entry(head, typeof(*pos), member); \&pos->member != (head); \pos = list_next_entry(pos, member))// 示例:定义一个学生结构体,包含链表节点
struct student {int id;char name[20];struct list_head list;
};int main() {// 初始化链表头节点LIST_HEAD(students_list);// 创建并初始化学生节点struct student stu1 = {1, "Alice", LIST_HEAD_INIT(stu1.list)};struct student stu2 = {2, "Bob", LIST_HEAD_INIT(stu2.list)};struct student stu3 = {3, "Charlie", LIST_HEAD_INIT(stu3.list)};// 将学生节点添加到链表中list_add(&stu1.list, &students_list);list_add(&stu2.list, &students_list);list_add_tail(&stu3.list, &students_list);// 遍历链表并打印学生信息struct student *pos;LIST_FOR_EACH_ENTRY(pos, &students_list, list) {printf("Student ID: %d, Name: %s\n", pos->id, pos->name);}// 删除链表中的节点list_del(&stu2.list);// 再次遍历链表并打印学生信息printf("After deleting stu2:\n");LIST_FOR_EACH_ENTRY(pos, &students_list, list) {printf("Student ID: %d, Name: %s\n", pos->id, pos->name);}return 0;
}

下面代码摘自 linux 内核代码 v6.7.1 LXR linux/include/linux/list.h

#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H#include <linux/container_of.h>
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/poison.h>
#include <linux/const.h>#include <asm/barrier.h>/** Circular doubly linked list implementation.** Some of the internal functions ("__xxx") are useful when* manipulating whole lists rather than single entries, as* sometimes we already know the next/prev entries and we can* generate better code by using them directly rather than* using the generic single-entry routines.*/#define LIST_HEAD_INIT(name) { &(name), &(name) }#define LIST_HEAD(name) \struct list_head name = LIST_HEAD_INIT(name)/*** INIT_LIST_HEAD - Initialize a list_head structure* @list: list_head structure to be initialized.** Initializes the list_head to point to itself.  If it is a list header,* the result is an empty list.*/
static inline void INIT_LIST_HEAD(struct list_head *list)
{WRITE_ONCE(list->next, list);WRITE_ONCE(list->prev, list);
}#ifdef CONFIG_LIST_HARDENED#ifdef CONFIG_DEBUG_LIST
# define __list_valid_slowpath
#else
# define __list_valid_slowpath __cold __preserve_most
#endif/** Performs the full set of list corruption checks before __list_add().* On list corruption reports a warning, and returns false.*/
extern bool __list_valid_slowpath __list_add_valid_or_report(struct list_head *new,struct list_head *prev,struct list_head *next);/** Performs list corruption checks before __list_add(). Returns false if a* corruption is detected, true otherwise.** With CONFIG_LIST_HARDENED only, performs minimal list integrity checking* inline to catch non-faulting corruptions, and only if a corruption is* detected calls the reporting function __list_add_valid_or_report().*/
static __always_inline bool __list_add_valid(struct list_head *new,struct list_head *prev,struct list_head *next)
{bool ret = true;if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {/** With the hardening version, elide checking if next and prev* are NULL, since the immediate dereference of them below would* result in a fault if NULL.** With the reduced set of checks, we can afford to inline the* checks, which also gives the compiler a chance to elide some* of them completely if they can be proven at compile-time. If* one of the pre-conditions does not hold, the slow-path will* show a report which pre-condition failed.*/if (likely(next->prev == prev && prev->next == next && new != prev && new != next))return true;ret = false;}ret &= __list_add_valid_or_report(new, prev, next);return ret;
}/** Performs the full set of list corruption checks before __list_del_entry().* On list corruption reports a warning, and returns false.*/
extern bool __list_valid_slowpath __list_del_entry_valid_or_report(struct list_head *entry);/** Performs list corruption checks before __list_del_entry(). Returns false if a* corruption is detected, true otherwise.** With CONFIG_LIST_HARDENED only, performs minimal list integrity checking* inline to catch non-faulting corruptions, and only if a corruption is* detected calls the reporting function __list_del_entry_valid_or_report().*/
static __always_inline bool __list_del_entry_valid(struct list_head *entry)
{bool ret = true;if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {struct list_head *prev = entry->prev;struct list_head *next = entry->next;/** With the hardening version, elide checking if next and prev* are NULL, LIST_POISON1 or LIST_POISON2, since the immediate* dereference of them below would result in a fault.*/if (likely(prev->next == entry && next->prev == entry))return true;ret = false;}ret &= __list_del_entry_valid_or_report(entry);return ret;
}
#else
static inline bool __list_add_valid(struct list_head *new,struct list_head *prev,struct list_head *next)
{return true;
}
static inline bool __list_del_entry_valid(struct list_head *entry)
{return true;
}
#endif/** Insert a new entry between two known consecutive entries.** This is only for internal list manipulation where we know* the prev/next entries already!*/
static inline void __list_add(struct list_head *new,struct list_head *prev,struct list_head *next)
{if (!__list_add_valid(new, prev, next))return;next->prev = new;new->next = next;new->prev = prev;WRITE_ONCE(prev->next, new);
}/*** list_add - add a new entry* @new: new entry to be added* @head: list head to add it after** Insert a new entry after the specified head.* This is good for implementing stacks.*/
static inline void list_add(struct list_head *new, struct list_head *head)
{__list_add(new, head, head->next);
}/*** list_add_tail - add a new entry* @new: new entry to be added* @head: list head to add it before** Insert a new entry before the specified head.* This is useful for implementing queues.*/
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{__list_add(new, head->prev, head);
}/** Delete a list entry by making the prev/next entries* point to each other.** This is only for internal list manipulation where we know* the prev/next entries already!*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{next->prev = prev;WRITE_ONCE(prev->next, next);
}/** Delete a list entry and clear the 'prev' pointer.** This is a special-purpose list clearing method used in the networking code* for lists allocated as per-cpu, where we don't want to incur the extra* WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this* needs to check the node 'prev' pointer instead of calling list_empty().*/
static inline void __list_del_clearprev(struct list_head *entry)
{__list_del(entry->prev, entry->next);entry->prev = NULL;
}static inline void __list_del_entry(struct list_head *entry)
{if (!__list_del_entry_valid(entry))return;__list_del(entry->prev, entry->next);
}/*** list_del - deletes entry from list.* @entry: the element to delete from the list.* Note: list_empty() on entry does not return true after this, the entry is* in an undefined state.*/
static inline void list_del(struct list_head *entry)
{__list_del_entry(entry);entry->next = LIST_POISON1;entry->prev = LIST_POISON2;
}/*** list_replace - replace old entry by new one* @old : the element to be replaced* @new : the new element to insert** If @old was empty, it will be overwritten.*/
static inline void list_replace(struct list_head *old,struct list_head *new)
{new->next = old->next;new->next->prev = new;new->prev = old->prev;new->prev->next = new;
}/*** list_replace_init - replace old entry by new one and initialize the old one* @old : the element to be replaced* @new : the new element to insert** If @old was empty, it will be overwritten.*/
static inline void list_replace_init(struct list_head *old,struct list_head *new)
{list_replace(old, new);INIT_LIST_HEAD(old);
}/*** list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position* @entry1: the location to place entry2* @entry2: the location to place entry1*/
static inline void list_swap(struct list_head *entry1,struct list_head *entry2)
{struct list_head *pos = entry2->prev;list_del(entry2);list_replace(entry1, entry2);if (pos == entry1)pos = entry2;list_add(entry1, pos);
}/*** list_del_init - deletes entry from list and reinitialize it.* @entry: the element to delete from the list.*/
static inline void list_del_init(struct list_head *entry)
{__list_del_entry(entry);INIT_LIST_HEAD(entry);
}/*** list_move - delete from one list and add as another's head* @list: the entry to move* @head: the head that will precede our entry*/
static inline void list_move(struct list_head *list, struct list_head *head)
{__list_del_entry(list);list_add(list, head);
}/*** list_move_tail - delete from one list and add as another's tail* @list: the entry to move* @head: the head that will follow our entry*/
static inline void list_move_tail(struct list_head *list,struct list_head *head)
{__list_del_entry(list);list_add_tail(list, head);
}/*** list_bulk_move_tail - move a subsection of a list to its tail* @head: the head that will follow our entry* @first: first entry to move* @last: last entry to move, can be the same as first** Move all entries between @first and including @last before @head.* All three entries must belong to the same linked list.*/
static inline void list_bulk_move_tail(struct list_head *head,struct list_head *first,struct list_head *last)
{first->prev->next = last->next;last->next->prev = first->prev;head->prev->next = first;first->prev = head->prev;last->next = head;head->prev = last;
}/*** list_is_first -- tests whether @list is the first entry in list @head* @list: the entry to test* @head: the head of the list*/
static inline int list_is_first(const struct list_head *list, const struct list_head *head)
{return list->prev == head;
}/*** list_is_last - tests whether @list is the last entry in list @head* @list: the entry to test* @head: the head of the list*/
static inline int list_is_last(const struct list_head *list, const struct list_head *head)
{return list->next == head;
}/*** list_is_head - tests whether @list is the list @head* @list: the entry to test* @head: the head of the list*/
static inline int list_is_head(const struct list_head *list, const struct list_head *head)
{return list == head;
}/*** list_empty - tests whether a list is empty* @head: the list to test.*/
static inline int list_empty(const struct list_head *head)
{return READ_ONCE(head->next) == head;
}/*** list_del_init_careful - deletes entry from list and reinitialize it.* @entry: the element to delete from the list.** This is the same as list_del_init(), except designed to be used* together with list_empty_careful() in a way to guarantee ordering* of other memory operations.** Any memory operations done before a list_del_init_careful() are* guaranteed to be visible after a list_empty_careful() test.*/
static inline void list_del_init_careful(struct list_head *entry)
{__list_del_entry(entry);WRITE_ONCE(entry->prev, entry);smp_store_release(&entry->next, entry);
}/*** list_empty_careful - tests whether a list is empty and not being modified* @head: the list to test** Description:* tests whether a list is empty _and_ checks that no other CPU might be* in the process of modifying either member (next or prev)** NOTE: using list_empty_careful() without synchronization* can only be safe if the only activity that can happen* to the list entry is list_del_init(). Eg. it cannot be used* if another CPU could re-list_add() it.*/
static inline int list_empty_careful(const struct list_head *head)
{struct list_head *next = smp_load_acquire(&head->next);return list_is_head(next, head) && (next == READ_ONCE(head->prev));
}/*** list_rotate_left - rotate the list to the left* @head: the head of the list*/
static inline void list_rotate_left(struct list_head *head)
{struct list_head *first;if (!list_empty(head)) {first = head->next;list_move_tail(first, head);}
}/*** list_rotate_to_front() - Rotate list to specific item.* @list: The desired new front of the list.* @head: The head of the list.** Rotates list so that @list becomes the new front of the list.*/
static inline void list_rotate_to_front(struct list_head *list,struct list_head *head)
{/** Deletes the list head from the list denoted by @head and* places it as the tail of @list, this effectively rotates the* list so that @list is at the front.*/list_move_tail(head, list);
}/*** list_is_singular - tests whether a list has just one entry.* @head: the list to test.*/
static inline int list_is_singular(const struct list_head *head)
{return !list_empty(head) && (head->next == head->prev);
}static inline void __list_cut_position(struct list_head *list,struct list_head *head, struct list_head *entry)
{struct list_head *new_first = entry->next;list->next = head->next;list->next->prev = list;list->prev = entry;entry->next = list;head->next = new_first;new_first->prev = head;
}/*** list_cut_position - cut a list into two* @list: a new list to add all removed entries* @head: a list with entries* @entry: an entry within head, could be the head itself*      and if so we won't cut the list** This helper moves the initial part of @head, up to and* including @entry, from @head to @list. You should* pass on @entry an element you know is on @head. @list* should be an empty list or a list you do not care about* losing its data.**/
static inline void list_cut_position(struct list_head *list,struct list_head *head, struct list_head *entry)
{if (list_empty(head))return;if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))return;if (list_is_head(entry, head))INIT_LIST_HEAD(list);else__list_cut_position(list, head, entry);
}/*** list_cut_before - cut a list into two, before given entry* @list: a new list to add all removed entries* @head: a list with entries* @entry: an entry within head, could be the head itself** This helper moves the initial part of @head, up to but* excluding @entry, from @head to @list.  You should pass* in @entry an element you know is on @head.  @list should* be an empty list or a list you do not care about losing* its data.* If @entry == @head, all entries on @head are moved to* @list.*/
static inline void list_cut_before(struct list_head *list,struct list_head *head,struct list_head *entry)
{if (head->next == entry) {INIT_LIST_HEAD(list);return;}list->next = head->next;list->next->prev = list;list->prev = entry->prev;list->prev->next = list;head->next = entry;entry->prev = head;
}static inline void __list_splice(const struct list_head *list,struct list_head *prev,struct list_head *next)
{struct list_head *first = list->next;struct list_head *last = list->prev;first->prev = prev;prev->next = first;last->next = next;next->prev = last;
}/*** list_splice - join two lists, this is designed for stacks* @list: the new list to add.* @head: the place to add it in the first list.*/
static inline void list_splice(const struct list_head *list,struct list_head *head)
{if (!list_empty(list))__list_splice(list, head, head->next);
}/*** list_splice_tail - join two lists, each list being a queue* @list: the new list to add.* @head: the place to add it in the first list.*/
static inline void list_splice_tail(struct list_head *list,struct list_head *head)
{if (!list_empty(list))__list_splice(list, head->prev, head);
}/*** list_splice_init - join two lists and reinitialise the emptied list.* @list: the new list to add.* @head: the place to add it in the first list.** The list at @list is reinitialised*/
static inline void list_splice_init(struct list_head *list,struct list_head *head)
{if (!list_empty(list)) {__list_splice(list, head, head->next);INIT_LIST_HEAD(list);}
}/*** list_splice_tail_init - join two lists and reinitialise the emptied list* @list: the new list to add.* @head: the place to add it in the first list.** Each of the lists is a queue.* The list at @list is reinitialised*/
static inline void list_splice_tail_init(struct list_head *list,struct list_head *head)
{if (!list_empty(list)) {__list_splice(list, head->prev, head);INIT_LIST_HEAD(list);}
}/*** list_entry - get the struct for this entry* @ptr:        the &struct list_head pointer.* @type:       the type of the struct this is embedded in.* @member:     the name of the list_head within the struct.*/
#define list_entry(ptr, type, member) \container_of(ptr, type, member)/*** list_first_entry - get the first element from a list* @ptr:        the list head to take the element from.* @type:       the type of the struct this is embedded in.* @member:     the name of the list_head within the struct.** Note, that list is expected to be not empty.*/
#define list_first_entry(ptr, type, member) \list_entry((ptr)->next, type, member)/*** list_last_entry - get the last element from a list* @ptr:        the list head to take the element from.* @type:       the type of the struct this is embedded in.* @member:     the name of the list_head within the struct.** Note, that list is expected to be not empty.*/
#define list_last_entry(ptr, type, member) \list_entry((ptr)->prev, type, member)/*** list_first_entry_or_null - get the first element from a list* @ptr:        the list head to take the element from.* @type:       the type of the struct this is embedded in.* @member:     the name of the list_head within the struct.** Note that if the list is empty, it returns NULL.*/
#define list_first_entry_or_null(ptr, type, member) ({ \struct list_head *head__ = (ptr); \struct list_head *pos__ = READ_ONCE(head__->next); \pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
})/*** list_next_entry - get the next element in list* @pos:        the type * to cursor* @member:     the name of the list_head within the struct.*/
#define list_next_entry(pos, member) \list_entry((pos)->member.next, typeof(*(pos)), member)/*** list_next_entry_circular - get the next element in list* @pos:        the type * to cursor.* @head:       the list head to take the element from.* @member:     the name of the list_head within the struct.** Wraparound if pos is the last element (return the first element).* Note, that list is expected to be not empty.*/
#define list_next_entry_circular(pos, head, member) \(list_is_last(&(pos)->member, head) ? \list_first_entry(head, typeof(*(pos)), member) : list_next_entry(pos, member))/*** list_prev_entry - get the prev element in list* @pos:        the type * to cursor* @member:     the name of the list_head within the struct.*/
#define list_prev_entry(pos, member) \list_entry((pos)->member.prev, typeof(*(pos)), member)/*** list_prev_entry_circular - get the prev element in list* @pos:        the type * to cursor.* @head:       the list head to take the element from.* @member:     the name of the list_head within the struct.** Wraparound if pos is the first element (return the last element).* Note, that list is expected to be not empty.*/
#define list_prev_entry_circular(pos, head, member) \(list_is_first(&(pos)->member, head) ? \list_last_entry(head, typeof(*(pos)), member) : list_prev_entry(pos, member))/*** list_for_each        -       iterate over a list* @pos:        the &struct list_head to use as a loop cursor.* @head:       the head for your list.*/
#define list_for_each(pos, head) \for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)/*** list_for_each_reverse - iterate backwards over a list* @pos:        the &struct list_head to use as a loop cursor.* @head:       the head for your list.*/
#define list_for_each_reverse(pos, head) \for (pos = (head)->prev; pos != (head); pos = pos->prev)/*** list_for_each_rcu - Iterate over a list in an RCU-safe fashion* @pos:        the &struct list_head to use as a loop cursor.* @head:       the head for your list.*/
#define list_for_each_rcu(pos, head)              \for (pos = rcu_dereference((head)->next); \!list_is_head(pos, (head)); \pos = rcu_dereference(pos->next))/*** list_for_each_continue - continue iteration over a list* @pos:        the &struct list_head to use as a loop cursor.* @head:       the head for your list.** Continue to iterate over a list, continuing after the current position.*/
#define list_for_each_continue(pos, head) \for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)/*** list_for_each_prev   -       iterate over a list backwards* @pos:        the &struct list_head to use as a loop cursor.* @head:       the head for your list.*/
#define list_for_each_prev(pos, head) \for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)/*** list_for_each_safe - iterate over a list safe against removal of list entry* @pos:        the &struct list_head to use as a loop cursor.* @n:          another &struct list_head to use as temporary storage* @head:       the head for your list.*/
#define list_for_each_safe(pos, n, head) \for (pos = (head)->next, n = pos->next; \!list_is_head(pos, (head)); \pos = n, n = pos->next)/*** list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry* @pos:        the &struct list_head to use as a loop cursor.* @n:          another &struct list_head to use as temporary storage* @head:       the head for your list.*/
#define list_for_each_prev_safe(pos, n, head) \for (pos = (head)->prev, n = pos->prev; \!list_is_head(pos, (head)); \pos = n, n = pos->prev)/*** list_count_nodes - count nodes in the list* @head:       the head for your list.*/
static inline size_t list_count_nodes(struct list_head *head)
{struct list_head *pos;size_t count = 0;list_for_each(pos, head)count++;return count;
}/*** list_entry_is_head - test if the entry points to the head of the list* @pos:        the type * to cursor* @head:       the head for your list.* @member:     the name of the list_head within the struct.*/
#define list_entry_is_head(pos, head, member)                           \(&pos->member == (head))/*** list_for_each_entry  -       iterate over list of given type* @pos:        the type * to use as a loop cursor.* @head:       the head for your list.* @member:     the name of the list_head within the struct.*/
#define list_for_each_entry(pos, head, member)                          \for (pos = list_first_entry(head, typeof(*pos), member);        \!list_entry_is_head(pos, head, member);                    \pos = list_next_entry(pos, member))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/67384.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测

WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测 目录 WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 基于WOA-CNN-GRU-Attention、…

广播网络实验

1 实验内容 1、构建星性拓扑下的广播网络,实现hub各端口的数据广播,验证网络的连通性并测试网络效率 2、构建环形拓扑网络,验证该拓扑下结点广播会产生数据包环路 2 实验流程与结果分析 2.1 实验环境 ubuntu、mininet、xterm、wireshark、iperf 2.2 实验方案与结果分析…

人参t2t基因组-文献精读100

Telomere-to-telomere reference genome for Panax ginseng highlights the evolution of saponin biosynthesis 人参的端粒到端粒参考基因组揭示皂苷生物合成的进化 摘要 人参&#xff08;Panax ginseng&#xff09;是中药的代表性植物之一&#xff0c;并在全球范围内广泛使…

深度学习基础--GRU学习笔记(李沐《动手学习深度学习》)

前言 GRU是RNN模型的升级版&#xff0c;也是LSTM的弱化版&#xff0c;学习GRU也是为了学习LSTM做准备&#xff0c;这一篇文章是学习笔记&#xff1b;RNN&#xff1a;RNN讲解参考&#xff1a;李沐动手学习深度学习&#xff1b;欢迎收藏加关注&#xff0c;本人将会持续更新。 文…

unity学习17:unity里的旋转学习,欧拉角,四元数等

目录 1 三维空间里的旋转与欧拉角&#xff0c;四元数 1.1 欧拉角比较符合直观 1.2 四元数 1.3 下面是欧拉角和四元数的一些参考文章 2 关于旋转的这些知识点 2.1 使用euler欧拉角旋转 2.2 使用quaternion四元数,w,x,y,z 2.3 使用quaternion四元数,类 Vector3.zero 这种…

Three.js计算机与反射艺术相结合

反射-CSDN直播反射映象https://live.csdn.net/v/460090 一.CSS部分 body {margin: 0;padding: 0;height: 100vh;overflow: hidden;display: flex;align-items: center;justify-content: center;background: black; }二.JS部分 //wccchallenge - reflection //reflection for…

PDF文件提取开源工具调研总结

概述 PDF是一种日常工作中广泛使用的跨平台文档格式&#xff0c;常常包含丰富的内容&#xff1a;包括文本、图表、表格、公式、图像。在现代信息处理工作流中发挥了重要的作用&#xff0c;尤其是RAG项目中&#xff0c;通过将非结构化数据转化为结构化和可访问的信息&#xff0…

从AI生成内容到虚拟现实:娱乐体验的新边界

引言 在快速发展的科技时代&#xff0c;娱乐行业正经历一场前所未有的变革。传统的娱乐方式正与先进技术融合&#xff0c;创造出全新的沉浸式体验。从AI生成的个性化内容&#xff0c;到虚拟现实带来的身临其境的互动场景&#xff0c;科技不仅改变了我们消费娱乐的方式&#xf…

pthread_create函数

函数原型 pthread_create 是 POSIX 线程&#xff08;pthread&#xff09;库中的一个函数&#xff0c;用于在程序中创建一个新线程。 #include <pthread.h>int pthread_create(pthread_t *thread, const pthread_attr_t *attr,void *(*start_routine) (void *), void *a…

《offer 来了:Java 面试核心知识点精讲 -- 原理篇》

在 Java 面试的战场上&#xff0c;只知皮毛可不行&#xff0c;面试官们越来越看重对原理的理解。今天就给大家分享一本能让你在面试中脱颖而出的 “武林秘籍”——《offer 来了&#xff1a;Java 面试核心知识点精讲 -- 原理篇》。 本书详细介绍了Java架构师在BAT和移动互联网公…

家政服务小程序,打造智慧家政新体验

春节即将来临&#xff0c;家政市场呈现出了火热的场景&#xff0c;大众对家政服务的需求持续增加。 近年来&#xff0c;家政市场开始倾向数字化、智能化&#xff0c;借助科学技术打造家政数字化平台&#xff0c;让大众在手机上就可以预约家政服务&#xff0c;减少传统家政市场…

vim练级攻略(精简版)

vim推荐配置: curl -sLf https://gitee.com/HGtz2222/VimForCpp/raw/master/install.sh -o ./install.sh && bash ./install.sh 0. 规定 Ctrl-λ 等价于 <C-λ> :command 等价于 :command <回车> n 等价于 数字 blank字符 等价于 空格&#xff0c;tab&am…

Java-数据结构-二叉树习题(1)

对于二叉树的学习&#xff0c;主要的还是得多多练习~毕竟二叉树属于新的知识&#xff0c;并且也并不是线性结构&#xff0c;再加上经常使用递归的方法解决二叉树的问题&#xff0c;所以代码的具体流程还是无法看到的&#xff0c;只能通过画图想象&#xff0c;所以还是必须多加练…

PCL K4PCS算法实现点云粗配准【2025最新版】

目录 一、算法原理1、算法概述2、算法流程3、参考文献二、 代码实现1、原始版本2、2024新版三、 结果展示本文由CSDN点云侠原创,原文链接,首发于:2020年4月27日。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的抄袭狗。 博客长期更新,本文最近一次更新时间为…

09-1_信号量的理论讲解

09-1_信号量的理论讲解 信号量是操作系统中的一种同步和互斥机制&#xff0c;它通过一个计数值来表示资源的数量。通过这种方式&#xff0c;信号量可以有效地协调不同任务之间的资源使用。今天我们将深入学习信号量的基本概念、分类以及如何使用它们。 1. 信号量的基本概念 …

基于SSM汽车美容管家【提供源码+答辩PPT+文档+项目部署】(高质量源码,可定制,提供文档,免费部署到本地)

作者简介&#xff1a;✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌ 主要内容&#xff1a;&#x1f31f;Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能…

Android 调用系统服务接口获取屏幕投影(需要android.uid.system)

媒体投影 借助 Android 5&#xff08;API 级别 21&#xff09;中引入的 android.media.projection API&#xff0c;您可以将设备屏幕中的内容截取为可播放、录制或投屏到其他设备&#xff08;如电视&#xff09;的媒体流。 Android 14&#xff08;API 级别 34&#xff09;引入…

SpringBoot源码解析(七):应用上下文结构体系

SpringBoot源码系列文章 SpringBoot源码解析(一)&#xff1a;SpringApplication构造方法 SpringBoot源码解析(二)&#xff1a;引导上下文DefaultBootstrapContext SpringBoot源码解析(三)&#xff1a;启动开始阶段 SpringBoot源码解析(四)&#xff1a;解析应用参数args Sp…

基于预共享密钥的IPsec实验

一、实验目的 &#xff08;1&#xff09;了解IPsec的原理和协议运行机制&#xff1b; &#xff08;2&#xff09;掌握IPsec身份认证的预共享密钥的配置&#xff1b; &#xff08;3&#xff09;掌握用Wireshark工具抓包分析IPsec数据包格式和协议流程。 二、实验设备与环境 &…

IIO(Industrial I/O)驱动介绍

文章目录 IIO&#xff08;Industrial I/O&#xff09;驱动是Linux内核中用于工业I/O设备的子系统&#xff0c;主要用于处理传感器数据采集和转换。以下是其关键点&#xff1a; 功能 数据采集&#xff1a;从传感器读取数据。数据处理&#xff1a;对原始数据进行滤波、校准等操作…