半导体数据分析: 玩转WM-811K Wafermap 数据集(三) AI 机器学习

前面我们已经通过两篇文章,一起熟悉了WM-811K Wafermap 数据集,并对其中的一些数据进行了调用,生成了一些统计信息和图片。今天我们接着继续往前走。

半导体数据分析: 玩转WM-811K Wafermap 数据集(二) AI 机器学习_wm811k数据集-CSDN博客

半导体数据分析: 玩转WM-811K Wafermap 数据集(一) AI 机器学习_wafer dataset-CSDN博客

当我们在处理大规模的数据集的时候,很多人都会有一种束手无策的感觉,尤其是面对海量的数据和复杂的结构时,可能会感到无从下手。我的经验就是抽丝剥茧,一步步来。实际上,通过系统化的步骤和合理的策略,我们可以有效地应对这些挑战。

搞过数据分析的都知道,缺失值的检查是数据处理过程中不可忽视的一环。当我们浏览数据集时,可能会发现相当一部分数据由于缺失值而变得无用。这些缺失值可能源于数据采集过程中的误差、设备故障或其他原因。为了确保后续分析的准确性,我们需要识别并处理这些缺失值。

当然,明确分析目标也非常重要。例如,如果我们只对具有特定故障类型标签的晶圆感兴趣,那么可以删除那些没有故障类型标签的数据。这样做不仅能够减少数据集的规模,还能提高数据的质量,使分析结果更加聚焦和可靠。

下面我我们就将整个数据做一些初步的处理,我们先来处理失效形式和训练类型。

之前我们从数据集中取出过一些数据  显示如下:

其中有两项  trianTestLabel和failureType,分别代表了训练测试标签,和失效标签。

我们对这两项通过下面的代码来进行处理:

import pandas as pdmp_file = "/data_disk/public_lib/wm811k_wafer_map/in/LSWMD.pkl"
df = pd.read_pickle(mp_file)df['failureNum']=df.failureType
df['trainTestNum']=df.trianTestLabel
mapping_type={'Center':0,'Donut':1,'Edge-Loc':2,'Edge-Ring':3,'Loc':4,'Random':5,'Scratch':6,'Near-full':7,'none':8}
mapping_traintest={'Training':0,'Test':1}
df=df.replace({'failureNum':mapping_type, 'trainTestNum':mapping_traintest})
tol_wafers = df.shape[0]
tol_wafers

在上面的代码中,我们抽取了  trianTestLabel 和failureNum 两列,分别重新命名为两列failureNum和trainTestNum,并通过两个字典mapping_type 和mapping_traintest进行了映射。在df.shape[0]中 返回 df 数据框的行数,即数据集中的总晶圆数量。该值存储在变量 tol_wafers 中。

811457

总数的晶圆是811457张。

然后我们来统计一下,失效的形式:

df_withlabel = df[(df['failureNum']>=0) & (df['failureNum']<=8)]
df_withlabel =df_withlabel.reset_index()
df_withpattern = df[(df['failureNum']>=0) & (df['failureNum']<=7)]
df_withpattern = df_withpattern.reset_index()
df_nonpattern = df[(df['failureNum']==8)]
df_withlabel.shape[0], df_withpattern.shape[0], df_nonpattern.shape[0]

上面的代码列出了三种标签 全部标签(0-8),有标记的标签(0-7),和 无标记的标签(8)。

并且每次取出标签的时候,都进行了重新索引:reset_index()。 这里对这个重新索引稍微解释一下:

重置索引通常是数据处理中的一个重要步骤,特别是在筛选数据或进行某些操作后。下面是重置索引的几个常见原因:

1. 确保索引连续

当你对 DataFrame 进行筛选或过滤后,原始数据的索引可能会变得不连续。例如,假设你从一个 DataFrame 中删除了一些行,结果就是剩余的行的索引会留下“空隙”。重置索引可以让你重新生成连续的索引,通常是从 0 开始递增的整数。

2. 方便后续操作

使用连续的整数索引使得后续的操作更简单。例如,在进一步分析或可视化数据时,连续的索引能避免因为跳跃的索引导致的潜在错误。它还可以帮助在合并(merge)或连接(concat)时避免索引冲突。

3. 删除旧的索引列

在使用 reset_index() 时,如果你不指定参数,原来的索引会被添加为一个新列。例如,如果你过滤掉了 DataFrame 的一些行,原索引列可能仍然包含那些被删除行的索引。重置索引不仅让索引连续,而且会去掉原始的索引列(除非你选择保留它)。

4. 避免潜在的错误

如果后续的操作需要基于索引进行一些处理(比如索引与行数的关联),不连续的索引可能会导致逻辑错误或不一致。重置索引确保了数据的索引一致性,减少了潜在的错误发生。

5. 保持代码整洁

有时,重置索引是为了保证代码简洁和易于阅读。尤其是当数据已经过多次筛选、过滤、分组等操作后,重新整洁的索引可以让分析过程更加清晰,避免在后续处理中迷失。

6. 去除层次索引(如果有)

如果在处理过程中曾经使用过多级索引(MultiIndex),可以通过 reset_index() 来降级到简单的单级索引,使得数据的访问和管理更为直观。

pandas 中,重新索引(reset index) 的主要目的是为数据框的索引(下标)重新分配连续的整数值,同时可以选择是否保留旧索引作为新列。

上面代码的最终运行结果是:

(172950, 25519, 147431)

这意味着172950片晶圆有标签,其中25519片晶圆被标记了失效形式,147431片晶圆没有标记失效形式。这个统计数据对我们后面用ai进行数据分析有参考作用。

然后我们来做一个统计图:

#创建图形和子图:
fig = plt.figure(figsize=(20, 4.5)) 
gs = gridspec.GridSpec(1, 2, width_ratios=[1, 2.5]) 
ax1 = plt.subplot(gs[0])
ax2 = plt.subplot(gs[1])#饼图:展示晶圆的标签分类
no_wafers = [tol_wafers - df_withlabel.shape[0], df_withpattern.shape[0], df_nonpattern.shape[0]]colors = ['silver', 'orange', 'gold']
explode = (0.1, 0, 0) 
labels = ['no-label', 'label&pattern', 'label&non-pattern']
ax1.pie(no_wafers, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=140)#条形图:显示不同故障类型的分布
uni_pattern = np.unique(df_withpattern.failureNum, return_counts=True)
labels2 = ['', 'Center', 'Donut', 'Edge-Loc', 'Edge-Ring', 'Loc', 'Random', 'Scratch', 'Near-full']ax2.bar(uni_pattern[0], uni_pattern[1] / df_withpattern.shape[0], color='gold', align='center', alpha=0.9)
ax2.set_title("Failure Type Frequency")
ax2.set_ylabel("% of Pattern Wafers")plt.show()

 运行结果如下:

根据failureType变量过滤,172950片晶圆有标签,而78.7%的晶圆没有标签。在贴有标签的晶圆片中,只有3.1%(25,519片)的晶圆片存在真正的失效模式,而147,431片晶圆片仍贴有“无”标签。因此,我们只关注这25,519个实例,这大大减少了我们工作的计算量。从上面的第二张图中,数据集显示出,失效形式呈现出了高度的不平衡分布。

图片展示数据是一种最佳数据展示的方式之一,因此观察原始数据的最好方法是进行数据可视化。接下来我们用数据集中标记的模式显示前100个样本。 

fig, ax = plt.subplots(nrows = 10, ncols = 10, figsize=(20, 20))
ax = ax.ravel(order='C')
for i in range(100):img = df_withpattern.waferMap[i]ax[i].imshow(img)ax[i].set_title(df_withpattern.failureType[i][0][0], fontsize=10)ax[i].set_xlabel(df_withpattern.index[i], fontsize=8)ax[i].set_xticks([])ax[i].set_yticks([])
plt.tight_layout()
plt.show() 

 

我们同样也可以通过失效形式分别来绘制晶圆图:

x = [0,1,2,3,4,5,6,7]
labels2 = ['Center','Donut','Edge-Loc','Edge-Ring','Loc','Random','Scratch','Near-full']for k in x:fig, ax = plt.subplots(nrows = 1, ncols = 10, figsize=(18, 12))ax = ax.ravel(order='C')for j in [k]:img = df_withpattern.waferMap[df_withpattern.failureType==labels2[j]]for i in range(10):ax[i].imshow(img[img.index[i]])ax[i].set_title(df_withpattern.failureType[img.index[i]][0][0], fontsize=10)ax[i].set_xlabel(df_withpattern.index[img.index[i]], fontsize=10)ax[i].set_xticks([])ax[i].set_yticks([])plt.tight_layout()plt.show() 

然后我们从上面选取几种来进行放大可视:

根据上面的编号选取: [12,340, 8, 14, 13, 66, 15, 189] 
x = [12, 340, 8, 14, 13, 66, 15, 189]
labels2 = ['Center','Donut','Edge-Loc','Edge-Ring','Loc','Random','Scratch','Near-full']#ind_def = {'Center': 9, 'Donut': 340, 'Edge-Loc': 3, 'Edge-Ring': 16, 'Loc': 0, 'Random': 25,  'Scratch': 84, 'Near-full': 37}
fig, ax = plt.subplots(nrows = 2, ncols = 4, figsize=(20, 10))
ax = ax.ravel(order='C')
for i in range(8):img = df_withpattern.waferMap[x[i]]ax[i].imshow(img)ax[i].set_title(df_withpattern.failureType[x[i]][0][0],fontsize=24)ax[i].set_xticks([])ax[i].set_yticks([])
plt.tight_layout()
plt.show() 

 经过上面的可视化,我们进一步加深了对这个数据集的了解,后面我们将对数据进行转换:通过使用缩放、属性分解和属性聚合的工程特征,转换为机器学习准备的预处理数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/66912.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BGP 泄露

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 目录 1. BGP 是什么&#xff1f; 2. 什么是 BGP 泄露&#xff1f; 3. 今天发生了什么&#xff1f; 4. 正常和被劫持状态下的路由示意图 5. 受影响区域 6. 责任在谁&#xff1f; 7. 有办法避免这…

wireshark排除私接小路由

1.wireshark打开&#xff0c;发现了可疑地址&#xff0c;合法的地址段DHCP是192.168.100.0段的&#xff0c;打开后查看发现可疑地址段&#xff0c;分别是&#xff0c;192.168.0.1 192.168.1.174 192.168.1.1。查找到它对应的MAC地址。 ip.src192.168.1.1 2.通过show fdb p…

使用 CompletableFuture 实现异步编程

在现代 Java 开发中&#xff0c;异步编程是一项重要技能。而 CompletableFuture 是从 Java 8 开始提供的一个功能强大的工具&#xff0c;用于简化异步任务的编写和组合。本文将详细介绍 CompletableFuture 的基本使用和一些常见的应用场景。 1. 为什么选择 CompletableFuture&…

AWS云计算概览(自用留存,整理中)

目录 一、云概念概览 &#xff08;1&#xff09;云计算简介 &#xff08;2&#xff09;云计算6大优势 &#xff08;3&#xff09;web服务 &#xff08;4&#xff09;AWS云采用框架&#xff08;AWS CAF&#xff09; 二、云经济学 & 账单 &#xff08;1&#xff09;定…

【江协STM32】10-4/5 I2C通信外设、硬件I2C读写MPU6050

1. I2C外设简介 STM32内部集成了硬件I2C收发电路&#xff0c;可以由硬件自动执行时钟生成、起始终止条件生成、应答位收发、数据收发等功能&#xff0c;减轻CPU的负担支持多主机模型支持7位/10位地址模式支持不同的通讯速度&#xff0c;标准速度(高达100 kHz)&#xff0c;快速…

Web开发中页面出现乱码的解决(Java Web学习笔记:需在编译时用 -encoding utf-8)

目录 1 引言2 乱码表现、原因分析及解决2.1 乱码表现2.2 原因分析2.3 解决 3 总结 1 引言 Web开发的页面出现了乱码&#xff0c;一直不愿写出来&#xff0c;因为网上的解决方案太多了。但本文的所说的页面乱码问题&#xff0c;则是与网上的大多数解决方案不一样&#xff0c;使…

分类模型为什么使用交叉熵作为损失函数

推导过程 让推理更有体感&#xff0c;进行下面假设&#xff1a; 假设要对猫、狗进行图片识别分类假设模型输出 y y y&#xff0c;是一个几率&#xff0c;表示是猫的概率 训练资料如下&#xff1a; x n x^n xn类别 y ^ n \widehat{y}^n y ​n x 1 x^1 x1猫1 x 2 x^2 x2猫1 x …

【AUTOSAR 基础软件】软件组件的建立与使用(“代理”SWC)

基础软件往往需要建立一些“代理”SWC来完成一些驱动的抽象工作&#xff08;Complex_Device_Driver_Sw或者Ecu_Abstraction_Sw等&#xff09;&#xff0c;或建立Application Sw Component来补齐基础软件需要提供的功能实现。当面对具体的项目时&#xff0c;基础软件开发人员还可…

【Linux】sed编辑器二

一、处理多行命令 sed编辑器有3种可用于处理多行文本的特殊命令。 N&#xff1a;加入数据流中的下一行&#xff0c;创建一个多行组进行处理&#xff1b;D&#xff1a;删除多行组中的一行&#xff1b;P&#xff1a;打印多行组中的一行。 1、next命令&#xff1a;N 单行next命…

HTML5 网站模板

HTML5 网站模板 参考 HTML5 Website Templates

数据链路层-STP

生成树协议STP&#xff08;Spanning Tree Protocol&#xff09; 它的实现目标是&#xff1a;在包含有物理环路的网络中&#xff0c;构建出一个能够连通全网各节点的树型无环逻辑拓扑。 选举根交换机&#xff1a; 选举根端口&#xff1a; 选举指定端口&#xff1a; 端口名字&…

前端学习-事件流,事件捕获,事件冒泡以及阻止冒泡以及相应案例(二十八)

目录 前言 事件流与两个阶段说明 说明 事件捕获 目标 说明 事件冒泡 目标 事件冒泡概念 简单理解 阻止冒泡 目标 语法 注意 综合示例代码 总结 前言 梳洗罢&#xff0c;独倚望江楼。过尽千帆皆不是&#xff0c;斜晖脉脉水悠悠。肠断白蘋洲 事件流与两个阶段说明…

Cognitive architecture 又是个什么东东?

自Langchain&#xff1a; https://blog.langchain.dev/what-is-a-cognitive-architecture/ https://en.wikipedia.org/wiki/Cognitive_architecture 定义 A cognitive architecture refers to both a theory about the structure of the human mind and to a computational…

CVE-2025-22777 (CVSS 9.8):WordPress | GiveWP 插件的严重漏洞

漏洞描述 GiveWP 插件中发现了一个严重漏洞&#xff0c;该插件是 WordPress 最广泛使用的在线捐赠和筹款工具之一。该漏洞的编号为 CVE-2025-22777&#xff0c;CVSS 评分为 9.8&#xff0c;表明其严重性。 GiveWP 插件拥有超过 100,000 个活跃安装&#xff0c;为全球无数捐赠平…

【Linux】网络层

目录 IP协议 协议头格式 网段划分 2中网段划分的方式 为什么要进行网段划分 特殊的IP地址 IP地址的数量限制 私有IP地址和公有IP地址 路由 IP协议 在通信时&#xff0c;主机B要把数据要给主机C&#xff0c;一定要经过一条路径选择&#xff0c;为什么经过路由器G后&…

HarmonyOS:@LocalBuilder装饰器: 维持组件父子关系

一、前言 当开发者使用Builder做引用数据传递时&#xff0c;会考虑组件的父子关系&#xff0c;使用了bind(this)之后&#xff0c;组件的父子关系和状态管理的父子关系并不一致。为了解决组件的父子关系和状态管理的父子关系保持一致的问题&#xff0c;引入LocalBuilder装饰器。…

Elasticsearch—索引库操作(增删查改)

Elasticsearch中Index就相当于MySQL中的数据库表 Mapping映射就类似表的结构。 因此我们想要向Elasticsearch中存储数据,必须先创建Index和Mapping 1. Mapping映射属性 Mapping是对索引库中文档的约束&#xff0c;常见的Mapping属性包括&#xff1a; type&#xff1a;字段数据类…

MySQL进阶突击系列(05)突击MVCC核心原理 | 左右护法ReadView视图和undoLog版本链强强联合

2024小结&#xff1a;在写作分享上&#xff0c;这里特别感谢CSDN社区提供平台&#xff0c;支持大家持续学习分享交流&#xff0c;共同进步。社区诚意满满的干货&#xff0c;让大家收获满满。 对我而言&#xff0c;珍惜每一篇投稿分享&#xff0c;每一篇内容字数大概6000字左右&…

金融项目实战 02|接口测试分析、设计以及实现

目录 ⼀、接口相关理论 二、接口测试 1、待测接口&#xff1a;投资业务 2、接口测试流程 3、设计用例理论 1️⃣设计方法 2️⃣工具 4、测试点提取 5、测试用例&#xff08;只涉及了必测的&#xff09; 1️⃣注册图⽚验证码、注册短信验证码 2️⃣注册 3️⃣登录 …

指令的修饰符

指令的修饰符 参考文献&#xff1a; Vue的快速上手 Vue指令上 Vue指令下 Vue指令的综合案例 文章目录 指令的修饰符指令修饰符 结语 博客主页: He guolin-CSDN博客 关注我一起学习&#xff0c;一起进步&#xff0c;一起探索编程的无限可能吧&#xff01;让我们一起努力&…