PCL点云库入门——PCL库点云滤波算法之统计滤波(StatisticalOutlierRemoval)

1、算法原理

        统计滤波算法是一种利用统计学原理对点云数据进行处理的方法。它主要通过计算点云中每个点的统计特性,如均值、方差等,来决定是否保留该点。算法首先会设定一个统计阈值,然后对点云中的每个点进行分析。如果一个点的统计特性与周围点的统计特性相差不大,即认为该点是可靠的,并将其保留;反之,如果一个点的统计特性与周围点相比差异较大,那么这个点可能是一个异常点或噪声点,算法会将其移除。通过这种方式,统计滤波算法能够有效地减少数据中的噪声和异常值,提高点云数据的质量。这种算法特别适用于需要对数据进行精细处理的场合,例如在高精度建模和测量中。由于其能够提供较为精确的数据处理结果,统计滤波算法在点云数据处理领域中也占有一席之地。算法的实现步骤如下:

        第1步:创建点云数据的拓扑结构,如KDtree或Octree。

        第2步:计算每一个点的K邻域集合。

        第3步:计算每个点与其K邻域的距离dij的均值,其中i=[1,....,m] 表示点云数目,j=[1,....,k] 点的K邻域点。

        第4步:计算点云数据高斯分布模型参数d~N(u,α),距离的均值u,距离的标准差α,具体公式内容如下:

         第5步:计算统计滤波的阈值。

                                        dt=  u+ S  ; ​​​

          第6步:遍历所有点,如果其距离的均值大于指定置阈值,则为外点,将会被移除。

2、主要成员函数和变量

        1.主要的成员变量

        1)、 构建点云空间拓扑的方法,如KDtree和Octree

       SearcherPtr searcher_;

         2)、搜索点K邻域的个数,用于计算点的平均距离信息

       int mean_k_;

         3)、标准差修正因子

       double std_mul_;

        2.主要的成员函数 

        1)、设置搜索点K邻域的个数,用于计算点的平均距离,可以根据直接点云数据分布情况设置一般值15、30、50等。

         inline void setMeanK (int nr_k);

        2)、标准差修正因子 ,如0.1、0.3和0.5等。

         inline void setStddevMulThresh (double stddev_mult)

3、主要实现代码注解 

template <typename PointT> void
pcl::StatisticalOutlierRemoval<PointT>::applyFilterIndices (std::vector<int> &indices)
{// 初始化构建点云拓扑关系方法if (!searcher_){if (input_->isOrganized ())//有序点云searcher_.reset (new pcl::search::OrganizedNeighbor<PointT> ());else //无序点云数据用KD树方法searcher_.reset (new pcl::search::KdTree<PointT> (false));}searcher_->setInputCloud (input_);// 初始化需要的参数,K个邻域的索引集、距离集;所有点云数据的距离集std::vector<int> nn_indices (mean_k_);std::vector<float> nn_dists (mean_k_);std::vector<float> distances (indices_->size ());//内点、外点索引集初始化indices.resize (indices_->size ());removed_indices_->resize (indices_->size ());int oii = 0, rii = 0;  // oii = output indices iterator, rii = removed indices iterator//第一步:计算所有点相对于k个最近邻域点的平均距离int valid_distances = 0;for (int iii = 0; iii < static_cast<int> (indices_->size ()); ++iii)  // iii = input indices iterator{//无效点判断if (!std::isfinite (input_->points[(*indices_)[iii]].x) ||!std::isfinite (input_->points[(*indices_)[iii]].y) ||!std::isfinite (input_->points[(*indices_)[iii]].z)){//无序点的距离为0distances[iii] = 0.0;continue;}// P执行K个邻域点搜索if (searcher_->nearestKSearch ((*indices_)[iii], mean_k_ + 1, nn_indices, nn_dists) == 0){distances[iii] = 0.0;PCL_WARN ("[pcl::%s::applyFilter] Searching for the closest %d neighbors failed.\n", getClassName ().c_str (), mean_k_);continue;}// 计算点与K个邻域点之间距离的平均值double dist_sum = 0.0;for (int k = 1; k < mean_k_ + 1; ++k)  // k = 0 is the query pointdist_sum += sqrt (nn_dists[k]);//将距离均值信息保存到对应索引值中  distances[iii] = static_cast<float> (dist_sum / mean_k_);valid_distances++;}// 估计距离的均值和标准差(u,a)double sum = 0, sq_sum = 0;for (const float &distance : distances){sum += distance;sq_sum += distance * distance;}//均值double mean = sum / static_cast<double>(valid_distances);//方差---》前半部分为母体方差,double variance = (sq_sum - sum * sum / static_cast<double>(valid_distances)) / (static_cast<double>(valid_distances) - 1);//标准差double stddev = sqrt (variance);//getMeanStd (distances, mean, stddev);// 计算外点阈值 ,等于=均值+标准差的修正系数double distance_threshold = mean + std_mul_ * stddev;// 第二步:根据计算的距离阈值和每个点的距离值(分辨率)对点进行分类(内点和外点)for (int iii = 0; iii < static_cast<int> (indices_->size ()); ++iii)  // iii = input indices iterator{//平均距离太高的点是离群值,传递给移除的索引if ((!negative_ && distances[iii] > distance_threshold) || (negative_ && distances[iii] <= distance_threshold)){if (extract_removed_indices_)(*removed_indices_)[rii++] = (*indices_)[iii];continue;}// Otherwise it was a normal point for output (inlier)indices[oii++] = (*indices_)[iii];}// Resize the output arraysindices.resize (oii);removed_indices_->resize (rii);
}

4、代码示例

/*****************************************************************//**
* \file   PCLPCLRadiusOutliermain.cpp
* \brief
*
* \author YZS
* \date   January 2025
*********************************************************************/
#include<iostream>
#include <vector>
#include <ctime>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/io/auto_io.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/statistical_outlier_removal.h>
using namespace std;void PCLStatisticalOutlier()
{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new  pcl::PointCloud<pcl::PointXYZ>());std::string fileName = "E:/PCLlearnData/11/table.pcd";pcl::io::load(fileName, *cloud);std::cout << "Cloud Size:" << cloud->points.size() << std::endl;//保存滤波后的结果点云pcl::PointCloud<pcl::PointXYZ>::Ptr cloudFilter(new  pcl::PointCloud<pcl::PointXYZ>());//统计滤波算法pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sorFilter;// 统计滤波器对象sorFilter.setInputCloud(cloud);sorFilter.setMeanK(30);//设置搜索点K邻域的个数sorFilter.setStddevMulThresh(0.3);//设置标准差修正因子 ,如0.1、0.3和0.5等sorFilter.filter(*cloudFilter); // 执行滤波,并且保存结果到cloudFilter中std::cout << "filter Cloud Size:" << cloudFilter->points.size() << std::endl;//结果可视化
// PCLVisualizer对象pcl::visualization::PCLVisualizer viewer("FilterVIS");//创建左右窗口的ID v1和v2int v1(0);int v2(1);//设置V1窗口尺寸和背景颜色viewer.createViewPort(0.0, 0.0, 0.5, 1, v1);viewer.setBackgroundColor(0, 0, 0, v1);//设置V2窗口尺寸和背景颜色viewer.createViewPort(0.5, 0.0, 1, 1, v2);viewer.setBackgroundColor(0.1, 0.1, 0.1, v2);// 添加2d文字标签viewer.addText("v1", 10, 10, 20, 1, 0, 0, "Txtv1", v1);viewer.addText("v2", 10, 10, 20, 0, 1, 0, "Txtv2", v2);//设置cloud1的渲染属性,点云的ID和指定可视化窗口v1viewer.addPointCloud(cloud, "cloud1", v1);viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "cloud1");//设置cloud2的渲染属性,点云的ID和指定可视化窗口v2viewer.addPointCloud(cloudFilter, "cloud2", v2);viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "cloud2");// 可视化循环主体while (!viewer.wasStopped()){viewer.spinOnce();}
}
int main(int argc, char* argv[])
{PCLStatisticalOutlier();std::cout << "Hello World!" << std::endl;std::system("pause");return 0;
}

结果:

 

5、统计滤波算法缺点

        1)、计算每一个点的邻域集合时,可能会因为数据集的复杂性导致邻域集合的计算不准确,从而影响后续的距离计算和滤波效果。

        2)、在计算每个点与其邻域的距离dij时,如果点云数据中存在噪声或异常值,这些异常值可能会扭曲距离的计算,导致滤波结果不理想。

        3)、高斯分布模型参数的计算依赖于距离的均值u和标准差α,如果数据集中的离群值较多,可能会使得均值和标准差的估计不准确,进而影响到离群值的识别和删除。

        4)、遍历所有点并移除外点的过程中,如果设定的置信度阈值过高或过低,可能会导致过多的正常点被错误地识别为离群点而被移除,或者真正的离群点没有被有效识别,从而影响数据集的质量。

 至此完成第十二节PCL库点云滤波算法之统计滤波(StatisticalOutlierRemoval)学习,下一节我们将进入《PCL库中点云特征》的学习。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/65759.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS7 解决ping:www.baidu.com 未知的名称或服务

CentOS7 解决ping&#xff1a;www.baidu.com“未知的名称或服务 在VM查看网络配置 查看虚拟网络编辑器 编辑网络配置文件 vi /etc/sysconfig/network-scripts/ifcfg-ens33注意&#xff1a;不同机器的配置文件名可能不相同&#xff0c;通过 ip addr 命令查看 将 ONBOOT 从 no 改…

aws(学习笔记第二十一课) 开发lambda应用程序

aws(学习笔记第二十一课) 开发lambda应用程序 学习内容&#xff1a; lambda的整体概念开发lambda应用程序 1. lambda的整体概念 借助AWS Lambda&#xff0c;无需预置或管理服务器即可运行代码。只需为使用的计算时间付费。借助 Lambda&#xff0c;可以为几乎任何类型的应用进…

【Leetcode】3280. 将日期转换为二进制表示

文章目录 题目思路代码复杂度分析时间复杂度空间复杂度 结果总结 题目 题目链接&#x1f517; 给你一个字符串 date&#xff0c;它的格式为 yyyy-mm-dd&#xff0c;表示一个公历日期。 date 可以重写为二进制表示&#xff0c;只需要将年、月、日分别转换为对应的二进制表示&a…

作业:C高级:Day4

第一题 思维导图 第二题 test的指令(整数判断、字符串判断、文件判断) 结果 第三题 题目 终端输入一个C源文件名&#xff08;.c结尾&#xff09;判断文件是否有内容&#xff0c;如果没有内容删除文件&#xff0c;如果有内容编译并执行改文件。 代码 三种情形的结果&#xff1…

FristiLeaks_1.3靶场渗透

目录 环境搭建 开始渗透 扫一下存活&#xff08;也就是扫描一下靶机IP&#xff09; ​编辑 扫描端口 扫描服务 查看80端口 扫描一下目录 查看robots 再看一下images,没啥用 回头看主页面&#xff0c;说多喝点FRISTI&#xff0c;我们试试看 尝试admin和万能密码 查看源…

OpenCV的TickMeter计时类

OpenCV的TickMeter计时类 1. TickMeter是一个计时的类1.1 计算耗时1.2 计算循环的平均耗时和FPS1.3 function 2. 案例 1. TickMeter是一个计时的类 https://docs.opencv.org/4.x/d9/d6f/classcv_1_1TickMeter.html#details 1.1 计算耗时 TickMeter tm;tm.start();// do some…

logback之pattern详解以及源码分析

目录 &#xff08;一&#xff09;pattern关键字介绍 &#xff08;二&#xff09;源码分析 &#xff08;一&#xff09;pattern关键字介绍 %d或%date&#xff1a;表示日期&#xff0c;可配置格式化%d{yyyy-MM-dd HH:mm:ss} %r或%relative&#xff1a;也是日期&#xff0c;不过…

【专题】2024年出口跨境电商促销趋势白皮书报告汇总PDF洞察(附原数据表)

原文链接&#xff1a;https://tecdat.cn/?p38722 在当今全球化加速演进、数字经济蓬勃发展的大背景下&#xff0c;跨境电商行业正以前所未有的态势重塑国际贸易格局&#xff0c;成为各方瞩目的焦点领域。 根据亚马逊发布的《2024年出口跨境电商促销趋势白皮书》&#xff0c;…

primevue的<Menu>组件

1.使用场景 2.代码 1.给你的menu组件起个引用名 2.<Menu>组件需要一个MenuItem[] 3.你要知道MenuItem[ ]的特殊的数据格式&#xff0c;就像TreeNode[ ]一样&#xff0c;数据格式不对是不渲染的。。。。 常用的属性就这几种&#xff0c;js语言和java不一样&#xff0c;J…

NVR小程序接入平台EasyNVR使用FFmpeg取流时提示错误是什么原因呢?

在视频监控系统中&#xff0c;FFmpeg常用于从各种源&#xff08;如摄像头、文件、网络流等&#xff09;获取流媒体数据&#xff0c;这个过程通常称为“取流”。 在EasyNVR平台中&#xff0c;使用FFmpeg取流是一种常见的操作。FFmpeg作为一款强大的开源多媒体处理工具&#xff…

Springboot 升级带来的Swagger异常

当升级到Springboot 2.6.0 以上的版本后&#xff0c;Swagger 就不能正常工作了, 启动时报如下错误。当然如果你再使用sping boot Actuator 和 Springfox, 也会引起相关的NPE error. (github issue: https://github.com/springfox/springfox/issues/3462) NFO | jvm 1 | 2022/04…

编译原理期末复习-3小时速通

教材使用&#xff1a; 第二章 形式语言理论 基本概念 句子&#xff1a;只包含终结符。&#xff08;基本上就是全部由小写字母组成&#xff09;句型&#xff1a;推导过程中出现的所有符号串都叫做句型。只包含终结符的句型叫做句子。子树&#xff1a;语法树的某个节点连同他向…

关于 覆铜与导线之间间距较小需要增加间距 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/144776995 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…

Spring Certified Professional 2024 (2V0-72.22)

关于认证 Spring Certified Professional (2V0-72.22) 认证可证明您在 Spring Framework 方面的专业知识&#xff0c;Spring Framework 是构建企业级 Java 应用程序的领先平台。此认证在全球范围内得到认可&#xff0c;并证明您在 Spring 的各个方面都具有熟练程度&#xff0c;…

Spring Bean 无法被扫描到的问题

问题复现 ● 使用如下包结构&#xff1a; ● 我们发现 HelloWorldController 失效了&#xff0c;无法找到 HelloWorldController 这个 Bean 了。这是为何&#xff1f; 案例分析 ● 对于 Spring Boot 而言&#xff0c;关键点在于 Application.java 中使用了 SpringBootAppli…

Linux umami网站统计工具自定义API开发

Linux umami网站统计工具自定义API开发 一、src/queries/analytics/下添加调用sql查询文件&#xff1a;二、src/queries/index.js文件中增加导出模块内容&#xff1a;三、src/pages/api/下根据目录添加接口方法文件&#xff1a;四、构建项目&#xff0c;启动。1、到umami目录&a…

libvirt学习

文章目录 libvirt 简介节点、Hypervisor和域libvirt 安装和配置libvirt的XML配置文件libvirt APIMain libvirt APIsError handlingSpecial specific APIs 建立到Hypervisor的连接libvirt API使用编译libvirt工具virshvirt-clonevirt-dfvirt-imagevirt-installvirt-topvirt-what…

自动化测试工具Ranorex Studio(七十八)-故障排除

故障排除 如果你有连接问题&#xff0c;请考虑以下潜在的问题来源&#xff1a; • 请确保被测系统&#xff08;移动设备&#xff09;和运行测试的机器&#xff08;安装Ranorex的&#xff09;是在同一网络中的。 设备上的Wi-Fi设置更改后&#xff0c;请务必重新启动设备。 •…

常用的linux命令介绍

Linux是一个强大的操作系统&#xff0c;它提供了许多命令行工具来帮助用户管理文件和目录、监控系统性能、以及执行各种系统管理任务。下面是一些常用的Linux命令&#xff0c;我会用简单的语言来解释它们的作用&#xff1a; 1. ls • 作用&#xff1a;列出目录内容。 • 比喻&a…

万里数据库GreatSQL监控解析

GreatSQL是MySQL的一个分支&#xff0c;专注于提升MGR&#xff08;MySQL Group Replication&#xff09;的可靠性及性能。乐维监控平台可以有效地监控GreatSQL&#xff0c;帮助用户及时发现并解决潜在的性能问题。 通过在GreatSQL服务器上安装监控代理&#xff0c;收集数据库性…