opencv实现KNN算法识别图片数字

KNN算法实现识别图片数字

目录

  • KNN算法实现识别图片数字
    • 图片基本情况
      • 图片
      • 数据
    • 图片数字识别
      • 图片数据处理及预测
      • 其它数字图片正确率预测

图片基本情况


图片

在这里插入图片描述

数据

图片像素是2000x1000,即高(行)1000,宽(列)2000,每个数字区域为20*20,每5行都是同一个数字,每行数字有50个,每列数字有100个
在这里插入图片描述

图片数字识别


图片数据处理及预测

  • hsplit(矩阵,n)
    竖向切分切n个
  • vsplit(矩阵,n)
    横向切分切n个
  • reshape(-1,n)
    重构二维矩阵,-1表示所有,n表示列

400列即20*20每一个数字区域,每列为一个特征数据,占一个维度

  • astype(n)
    设置数据类型
  • cv2.ml.KNearest_create()
    创建knn算法
  • train(x,cv2.ml.ROW_SAMPLE,y)
    训练模型,x为特征数据,y为结果类别,cv2.ml.ROW_SAMPLE设置按行处理数据
  • ret,result,neighbors,dist = knn.findNearest(x,k=3)
    x为特征数据,k为范围,ret bool值,result数据预测结果,neighbors邻居,dist距离
  • 矩阵==矩阵
    返回矩阵,值为bool值,如果矩阵一一对应的值相等为T,否则F
  • np.count_nonzero(矩阵),计算为矩阵内非0的个数

代码展示:

# 灰度图
img1 = cv2.imread('tu_data.png')
img = cv2.imread('tu_data.png',0)# 每个数字区域为20*20,每5行都是同一个数字
# hsplit 竖向切分,vsplit 沿行横向切分
# 列表生成式,先横向切分切50行,再将横向行数据竖向切分,每行切100列,共50*100=5000个图片数据,每个都是一个1000/50=20,2000/100=20
#每个图片都是20*20的数值
cells = [np.hsplit(row,100) for row in np.vsplit(img,50)]
# print(cells)
# 列表转矩阵
data_img = np.array(cells)
# print(data_img)
# 切分数据一半,一半作为历史数据培训模型,一半作为测试数据,检测
# 切分后的是一半是5000/2=2500个,从中间竖切一半变为50*50
train_x = data_img[:,:50]
test_x = data_img[:,50:100]
# 设置x特征数据
tr_x = train_x.reshape(-1,400).astype(np.float32)
te_x = test_x.reshape(-1,400).astype(np.float32)
# 根据图片结果构建0-9的y类别标签
# 生成0-9的np矩阵
k = np.arange(10)
# 复制标签
# 从0到9,依次复制250个,50*5=250
lab = np.repeat(k,250)
# 增加数组维度
t_lab = lab[:,np.newaxis]
#创建knn算法
knn = cv2.ml.KNearest_create()
#训练模型
knn.train(tr_x,cv2.ml.ROW_SAMPLE,t_lab)
ret,result,neighbors,dist = knn.findNearest(te_x,k=3)
# 正确率
match = result==t_lab
T = np.count_nonzero(match)
c = T*100.0/ result.size
print(c)

运行结果:
在这里插入图片描述

其它数字图片正确率预测

其他图片为单个20*20的图片,如下
代码展示:
在这里插入图片描述

import cv2
import numpy as np# 只能是灰度图
img1 = cv2.imread('tu_data.png')
img = cv2.imread('tu_data.png',0)
# print(type(img1),type(img))
# 每个数字区域为20*20,每5行都是同一个数字
# hsplit 竖向切分,vsplit 沿行横向切分
# 列表生成式,先横向切分切50行,再将横向行数据竖向切分,每行切100列,共50*100=5000个图片数据,每个都是一个1000/50=20,2000/100=20
#每个图片都是20*20的数值
cells = [np.hsplit(row,100) for row in np.vsplit(img,50)]
# print(cells)
# 图片数据转np矩阵
data_img = np.array(cells)
# print(data_img)
# 切分数据一半,一半作为历史数据培训模型,一半作为测试数据,检测
# 切分后的是一半是5000/2=2500个,从中间竖切一半变为50*50
train_x = data_img[:,:50]
test_x = data_img[:,50:100]# 设置x特征数据
tr_x = train_x.reshape(-1,400).astype(np.float32)
te_x = test_x.reshape(-1,400).astype(np.float32)
# 根据图片结果构建0-9的y类别标签
# 生成0-9的np矩阵
k = np.arange(10)
# 复制标签
# 从0到9,依次复制250个,50*5=250
lab = np.repeat(k,250)
# 增加数组维度
t_lab = lab[:,np.newaxis]
print(k,type(k))
print(lab,type(lab))
print(t_lab,type(t_lab))
# 创建knn算法
knn = cv2.ml.KNearest_create()
#训练模型
knn.train(tr_x,cv2.ml.ROW_SAMPLE,t_lab)
ret,result,neighbors,dist = knn.findNearest(te_x,k=3)t1 = cv2.imread('t1.png',0)
t2 = cv2.imread('t2.png',0)
t3 = cv2.imread('t3.png',0)
t4 = cv2.imread('t4.png',0)
t5 = cv2.imread('t5.png',0)
t6 = cv2.imread('t6.png',0)
t7 = cv2.imread('t7.png',0)
t8 = cv2.imread('t8.png',0)
t9 = cv2.imread('t9.png',0)
t0 = cv2.imread('t0.png',0)
#运行都是np.array数组类型,需要添加定义为数组,再重构,可以先输出部分结果观察
tt = np.array([t0,t1,t2,t3,t4,t5,t6,t7,t8,t9])
k = np.array([0,1,2,3,4,5,6,7,8,9])
t_lab1 = k[:,np.newaxis]
tt = tt.reshape(-1,400).astype(np.float32)
# 不同数据输入可能输出结果与类型不同,判断标签可能需要调整
ret1,result1,neighbors1,dist1 = knn.findNearest(tt,k=3)
print(result1)
print(t_lab1)
match1 = result1==t_lab1
print(result1==t_lab1)
T1 = np.count_nonzero(match1)
c1 = T1*100.0/ result1.size
print(c1)

运行结果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/65666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入剖析Android SoundPool及其JNI实现

深入剖析Android SoundPool及其JNI实现 1. SoundPool概述 SoundPool是Android中用于管理和播放音频资源的类,特别适合播放短小的音效,如游戏中的爆炸声、按钮点击声等。与MediaPlayer相比,SoundPool具有以下优势: 低延迟:SoundPool适用于需要快速响应的音效播放。并发播…

HTML5 开关(Toggle Switch)详细讲解

HTML5 开关(Toggle Switch)详细讲解 1. 任务概述 开关(Toggle Switch)是一种用于表示二元状态(如开/关)的用户界面控件。用户可以通过点击开关来切换状态,常见于设置选项、开关功能等场景。 2…

Excel转Json编辑器工具

功能说明:根据 .xlsx 文件生成对应的 JSON 文件,并自动创建脚本 注意事项 Excel 读取依赖 本功能依赖 EPPlus 库,只能读取 .xlsx 文件。请确保将该脚本放置在 Assets 目录下的 Editor 文件夹中。同时,在 Editor 下再创建一个 Exc…

Python:爬虫基础《爬取红楼梦》

小说爬虫项目说明文档 用于爬取诗词名句网上小说内容的Python爬虫项目。本项目以《红楼梦》为例,演示如何爬取完整的小说内容。 项目功能 爬取小说的所有章节名称获取每个章节的URL链接下载并保存每个章节的内容到独立的文本文件自动创建存储目录包含基本的错误处…

HTTPS验证流程

http通常是直接和TCP进行通信的,而https中http是和SSL通信,再由SSL与TCP进行通信。SSL协议是一个介于应用层和传输层之间的一个安全协议。 1.对称加密与非对称加密 对称加密: 加密和解密方式都使用同一个私钥和公开的加密算法,优…

履约系统:应用层、领域层、集成关系设计

在这篇文章中,我们一起探讨订单履约系统的应用架构设计。 应用架构设计 我们前面讨论了系统的核心概念模型和拆单逻辑。接下来,让我们从应用架构的角度,深入了解系统的各个层次。这包括应用层、领域层,以及与其他系统的集成关系。…

python利用selenium实现大麦网抢票

大麦网(damai.cn)是中国领先的现场娱乐票务平台,涵盖演唱会、音乐会、话剧、歌剧、体育赛事等多种门票销售。由于其平台上经常会有热门演出,抢票成为许多用户关注的焦点。然而,由于票务资源的有限性,以及大…

神经网络-SENet

SENet是一种用于图像分类的卷积神经网络模型,由Jie Hu等人在2018年提出。SENet的全称是“Squeeze-and-Excitation Network”,其核心思想是通过自适应地调整每个通道的特征图权重,来增强卷积神经网络对于不同特征的感知能力。 SENet的设计灵感…

【spring】参数校验Validation

前言 在实际开发中,我们无法保证客户端传来的请求都是合法的。比如一些要求必传的参数没有传递,传来的参数长度不符合要求等,这种时候如果放任不管,继续执行后续业务逻辑,很有可能就会出现意想不到的bug。 有人可能会…

sentinel-请求限流、线程隔离、本地回调、熔断

请求限流:控制QPS来达到限流的目的 线程隔离:控制线程数量来达到限流的目录 本地回调:当线程被限流、隔离、熔断之后、就不会发起远程调用、而是使用本地已经准备好的回调去提醒用户 服务熔断:熔断也叫断路器,当失败、…

github提交不上去,网络超时问题解决

问题出现的原因: DNS服务器数据不同步,github的服务器发送迁移,在本地缓存的ip地址现在无效了。 解决方案: 1)点击这里,查询github.com最新的ip地址 2.0)编辑linux系统地址缓存文件&#x…

哪些框架、软件、中间件使用了netty? 哪些中间件、软件底层使用了epoll?

使用 Netty 的软件、中间件和框架 Netty 是一个异步事件驱动的网络应用框架,广泛应用于构建高性能的网络应用程序。以下是一些使用了 Netty 的知名软件、中间件和框架: 1. Elasticsearch 描述:Elasticsearch 是一个分布式的搜索和分析引擎…

C++和OpenGL实现3D游戏编程【连载19】——着色器光照初步(平行光和光照贴图)(附源码)

1、本节要实现的内容 我们在前期的教程中,讨论了在即时渲染模式下的光照内容。但在我们后期使用着色器的核心模式下,会经常在着色器中使光照,我们这里就讨论一下着色器光照效果,以及光照贴图效果,同时这里知识会为后期的更多光照效果做一些铺垫。本节我们首先讨论冯氏光照…

如何恢复永久删除的PPT文件?查看数据恢复教程!

可以恢复永久删除的PPT文件吗? Microsoft PowerPoint应用程序是一种应用广泛的演示程序,在人们的日常生活中经常使用。商人、官员、学生等在学习和工作中会使用PowerPoint做报告和演示。PowerPoint在人们的学习和工作生活中占主导地位,每天都…

基于Spark的共享单车数据存储系统的设计与实现_springboot+vue

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…

本地运行stable-diffusion3.5

本地运行stable-diffusion3.5 本地运行stable-diffusion3.5准备工作下载ComfyUI 和需要的模型文件需要下载以下几类SD3.5 文件 启动ComfyUI启动在工作流中分别选中三个Clip 模型 sd3.5_large_turbo准备 本地运行stable-diffusion3.5 AI 时代不可阻挡,给老机器加了个…

mysql高频面试题

1. mysql里的索引类型 2. 聚簇索引和非聚簇索引的区别 聚簇索引适合场景: 主键、唯一性要求高的字段。需要对数据进行范围查询时。对数据的读取频繁,并且数据行的插入和删除较少时。非聚簇索引适合场景: 较多的查询条件,或者需要基于某些非主键字段进行查询时。需要创建多个…

每日一练 | 时延和抖动

01 真题题目 关于时延和抖动,下面描述正确的是(多选): A. 端到端时延等于处理时延与队列时延之和 B. 抖动是因为每个包的端到端时延不相等造成的 C. 抖动的大小跟时延的大小相关,时延小则抖动的范围也小,时…

MySQL第二弹----CRUD

笔上得来终觉浅,绝知此事要躬行 🔥 个人主页:星云爱编程 🔥 所属专栏:MySQL 🌷追光的人,终会万丈光芒 🎉欢迎大家点赞👍评论📝收藏⭐文章 ​ 一、修改表 使用ALTER …

c++解决常见内存泄漏问题——智能指针的使用及其原理

目录 前言: 1. 智能指针的使用及其原理 1. 1 智能指针的使用场景分析 1.2 RAII和智能指针的设计思路 1.3 C标准库智能指针的使用 1.3 1 auto_ptr 1.3 2 unique_ptr 1.3 3 shared_ptr(重) 1.3 4 weak_ptr 1.3 5 模拟实现删除器 2.智能指针的原…