机器学习04-为什么Relu函数

机器学习0-为什么Relu函数


文章目录

  • 机器学习0-为什么Relu函数
    • @[toc]
    • 1-手搓神经网络步骤总结
    • 2-为什么要用Relu函数
    • 3-进行L1正则化
      • 修改后的代码
      • 解释
    • 4-进行L2正则化
      • 解释
      • 注意事项
    • 5-Relu激活函数多有夸张
      • 1-细数Relu函数的5宗罪
      • 2-Relu函数5宗罪详述
    • 6-那为什么要用这个Relu函数
    • 7-文本分类情感分析任务激活
      • 特征之间的关系
      • 常用的激活函数
      • 总结
    • 8-专业词汇解释

1-手搓神经网络步骤总结

  • 1)基于【预测值和真实值】最小的差别(使用最小二乘法)计算误差值
  • 2)如何求解【最小二乘法】的方法,分别针对w和b进行求导,计算方法叫做【梯度下降求解】->引入【迭代步数】+【学习率】的概念
  • 3)为了解决多个神经元的线性组合还是直线的问题进行非线性变换(激活函数)->引入ReLu等激活函数,各取所长
  • 4)OK,至此已经完美的解决了【线性模型】+【误差计算】+【梯度求解】+【非线性变化】的问题,直接可以得到我们的模型了
  • 5)但是这样的模型太过完美,导致计算的数据可能针对【训练和验证数据】太过完美,针对新数据预测不准->引入【L1/L2正则】

2-为什么要用Relu函数

为什么一个小学生都会的函数,可以解决神经网络中的梯度问题?

1)神经网络是基于线性组合进行变换了,就会导致所有的线性函数不论经过多少次变换都还是一个线性函数
2)OK,现在引入【非线性环变换-Relu函数】那么怎么解释这几个问题?

  • 1)多个Relu函数线性变换到底是个什么鬼?->可以用python进行绘制【曲线】->OK,y值经过Relu(y)后再线性组合可以表示非线性问题
  • 2)那为什么要用这个Relu函数?貌似我随手写一个函数,sin、cos、tan、cot甚至我手写一个只要不是直线的方程都可以实现【非线性变换】->答案:【生物学启示】+【计算效率】

诚实一点:别说太多玄乎的东西,就两个核心点【老板亲儿子->神经网络的生物学启示】+【计算时偷懒->把负数置为0,这样就不用计算负数部分的运算(计算效率)】

其他【稀疏性】+【缓解梯度消失问题】->先说【缓解梯度消失问题】只要斜率为0大家都会梯度消失,sigmoid或tanh这样的饱和非线性函数斜率会变为0,Relu函数在小于0时,直接就全变为0(直接躺平,大家都梯度消失了,所以这个接口太牵强了)

再说【稀疏性】所谓的【稀疏性】说人话就是让部分参数不参与计算(不激活),实现这个方式也太简单了,我可以选择跳过随机参数或者其他的方式都行,所以这个接口也太牵强

  • 3)OK,如果是【老板的儿子】当然是选择接纳他啦,还能怎么办!那Relu函数的主要负责什么场景,这样我们遇到这些场景,赶紧找Relu函数去大展拳脚,秀一波肌肉?->【线性特征场景(一半是线性)】+【长文本的稀疏计算(数据置0保留核心)】+【深度神经网络(数据置0计算简单)】
  • ReLU有一半是线性方程,可以很好的学习到线性特征;

  • 因为简单在深度神经网络的计算中可以有效计算;

  • 文本分类和情感分析等任务中只有核心的要点关键字,使用RelU可以剔除没有梯度变化的数据

  • 4)OK,【老板的儿子】再有本事也得找帮手进行互补,有没有其他的激活函数也可以解决这些事情?-> 四大金刚:Sigmoid、ReLU、Tanh 和 Leaky ReLU

其他激活函的场景:https://mp.weixin.qq.com/s?__biz=Mzk0NDM4OTYyOQ==&mid=2247484448&idx=1&sn=f5ae1d222067f7125cba799742ee17d3&chksm=c32428b2f453a1a43a99d88b060f1366dde591afa1ed78825a978e83a4bb3fe1eac922ddd217&token=142243382&lang=zh_CN#rd


3-进行L1正则化

在你的代码中,你已经实现了基本的梯度下降算法来拟合一个简单的线性模型,并使用Sigmoid函数作为激活函数。为了防止过拟合,你可以通过添加L1正则化来限制模型的复杂度。L1正则化通过在损失函数中添加模型参数的绝对值之和来实现。

下面是如何在你的代码中添加L1正则化的步骤:

  1. 定义正则化项:在损失函数中添加L1正则化项。
  2. 修改梯度计算:在计算梯度时,考虑正则化项的影响。

修改后的代码

import numpy as np# 输入数据
x_data = np.array([0, 1, 2, 3, 4])
y_data = np.array([0, 2, 4, 6, 8])# 初始化参数
m = 0
b = 0# 超参数
learning_rate = 0.01
epochs = 1000
lambda_l1 = 0.01  # L1正则化系数# Sigmoid激活函数
def sigmoid(x):return 1 / (1 + np.exp(-x))# Sigmoid的导数
def sigmoid_derivative(x):return sigmoid(x) * (1 - sigmoid(x))def compute_gradients(m, b, x, y, lambda_l1):N = len(x)z = m * x + by_pred = sigmoid(z)  # 使用sigmoid作为激活函数error = y_pred - ydL_dy_pred = errordL_dz = dL_dy_pred * sigmoid_derivative(z)  # 使用sigmoid的导数# 计算L1正则化的梯度dm_l1 = lambda_l1 * np.sign(m)db_l1 = lambda_l1 * np.sign(b)# 计算总的梯度dm = (2/N) * np.sum(dL_dz * x) + dm_l1db = (2/N) * np.sum(dL_dz) + db_l1return dm, dbfor epoch in range(epochs):dm, db = compute_gradients(m, b, x_data, y_data, lambda_l1)m = m - learning_rate * dmb = b - learning_rate * dbif epoch % 100 == 0:z = m * x_data + by_pred = sigmoid(z)  # 使用sigmoid作为激活函数进行预测loss = np.mean((y_pred - y_data)**2) + lambda_l1 * (abs(m) + abs(b))  # 添加L1正则化项print(f"Epoch {epoch}: m = {m}, b = {b}, loss = {loss}")print(f"Final equation: y = {m} * x + {b}")

解释

  1. 正则化系数 lambda_l1:这是一个超参数,控制L1正则化的强度。较大的值会导致模型参数更接近于零,从而减少模型的复杂度。

  2. 正则化项的梯度:在 compute_gradients 函数中,我们添加了L1正则化的梯度 dm_l1db_l1。L1正则化的梯度是参数的符号函数 np.sign(m)np.sign(b) 乘以正则化系数 lambda_l1

  3. 损失函数:在计算损失时,我们添加了L1正则化项 lambda_l1 * (abs(m) + abs(b)),这会使得模型参数的绝对值之和最小化。

通过这种方式,L1正则化可以帮助模型避免过拟合,尤其是在数据量较小或特征较多的情况下。


4-进行L2正则化

你的代码尝试使用梯度下降算法通过线性回归拟合线性数据,并且使用了 Sigmoid 激活函数。然而,对于线性数据,使用 Sigmoid 激活函数并不是最佳选择,因为它会将输出压缩到 0 和 1 之间,这可能导致损失函数值很高且收敛缓慢。

另外,你的代码中没有加入 L2 正则化来避免过拟合。为了在代码中添加 L2 正则化,我们需要在损失函数中加入一个正则化项,并在计算梯度时考虑这个项。L2 正则化项通常表示为参数的平方和乘以一个正则化系数 λ。

以下是修改后的代码,加入了 L2 正则化:

import numpy as np# 输入数据
x_data = np.array([0, 1, 2, 3, 4])
y_data = np.array([0, 2, 4, 6, 8])# 初始化参数
m = 0
b = 0# 超参数
learning_rate = 0.01
epochs = 1000
lambda_reg = 0.1  # 正则化系数# Sigmoid激活函数
def sigmoid(x):return 1 / (1 + np.exp(-x))# Sigmoid的导数
def sigmoid_derivative(x):return sigmoid(x) * (1 - sigmoid(x))def compute_gradients(m, b, x, y, lambda_reg):N = len(x)z = m * x + by_pred = sigmoid(z)  # 使用sigmoid作为激活函数error = y_pred - ydL_dy_pred = errordL_dz = dL_dy_pred * sigmoid_derivative(z)  # 使用sigmoid的导数dm = (2/N) * np.sum(dL_dz * x) + (2 * lambda_reg * m / N)  # 添加L2正则化项db = (2/N) * np.sum(dL_dz) + (2 * lambda_reg * b / N)  # 添加L2正则化项return dm, dbfor epoch in range(epochs):dm, db = compute_gradients(m, b, x_data, y_data, lambda_reg)m = m - learning_rate * dmb = b - learning_rate * dbif epoch % 100 == 0:z = m * x_data + by_pred = sigmoid(z)  # 使用sigmoid作为激活函数进行预测loss = np.mean((y_pred - y_data)**2) + (lambda_reg * (m**2 + b**2) / N)  # 添加L2正则化项print(f"Epoch {epoch}: m = {m}, b = {b}, loss = {loss}")print(f"Final equation: y = {m} * x + {b}")

解释

  1. L2 正则化项:在 compute_gradients 函数中,我们添加了 L2 正则化项 (2 * lambda_reg * m / N)(2 * lambda_reg * b / N),分别对 mb 的梯度进行正则化。
  2. 损失函数:在计算损失函数时,我们也添加了 L2 正则化项 (lambda_reg * (m**2 + b**2) / N)

注意事项

  • 正则化系数 λlambda_reg 是一个超参数,需要通过交叉验证等方法来选择合适的值。
  • 数据线性:对于线性数据,使用线性激活函数(如直接使用 z 而不是 sigmoid(z))可能会更合适,这样可以避免 Sigmoid 的压缩效应。
  • 学习率:学习率 learning_rate 也需要适当调整,以确保模型能够收敛。

希望这些修改能帮助你更好地理解和应用 L2 正则化。


5-Relu激活函数多有夸张

Relu激活函数是一个初中生都可以随手写出来的一个函数,看一下想法有多夸张【人有多么懒,地有多大产】

  • 1)直接把带负值公式全部删除了(啊啊啊啊啊啊啊。。。。)

  • 2)直接把负值参数全部抹掉了是个什么概念,我类比一下:数学老师让我算题

    -2x+3y=5
    4x+7y=8
    3x+8y=15
    
  • 3)我感觉负数不好看,直接把第一个公式删掉了,按照下面两个公式进行计算了。(啊啊啊啊啊啊啊。。。。)

  • 4)恐怖的不是我把这个公式删掉了,恐怖的是整个AI圈都在用这个方法进行求解(啊啊啊啊啊啊啊。。。。)

1-细数Relu函数的5宗罪

  • 1-引入非线性(解决线性组合的缺陷)

  • 2-计算效率高(强制把梯度设置为1和0-为0时把数据丢掉了)

  • 3-缓解梯度消失问题(强制把梯度设置为1和0)

  • 4-稀疏激活(强制把梯度设置为1和0)

  • 5-死亡ReLU问题(强制把梯度设置为1和0)


2-Relu函数5宗罪详述

引入非线性:在神经网络中,如果没有激活函数,多层神经网络等价于单层神经网络,因为线性变换的组合仍然是线性的。激活函数引入了非线性,使得神经网络能够学习和表示复杂的函数关系。

计算效率高:ReLU函数的计算非常简单,只需要进行一次阈值操作,即判断输入是否大于0。这在计算上比其他激活函数(如sigmoid或tanh)要高效得多,因为它们涉及指数运算。

3)缓解梯度消失问题:在深度网络中,使用sigmoid或tanh等饱和激活函数时,容易出现梯度消失问题,即在反向传播过程中,梯度值会随着层的加深而指数级衰减,导致网络训练困难。ReLU在x>0区域的梯度恒为1,因此可以缓解这个问题,使得深层网络更容易训练。

稀疏激活:ReLU函数会将所有负输入置零,这会导致一部分神经元在某些情况下不被激活,从而形成稀疏的激活模式。这种稀疏性有助于减少计算量,并可能有助于特征学习。

5)死亡ReLU问题:尽管ReLU有很多优点,但也存在一些问题。其中一个问题是“死亡ReLU”现象,即当神经元的输入长期为负时,其梯度为零,权重不再更新,神经元变得无效。为了解决这个问题,一些变体如Leaky ReLU、PReLU和ELU被提出,它们在x<0时引入一个小的斜率,以避免神经元死亡。


6-那为什么要用这个Relu函数

貌似我随手写一个函数,sin、 cos、 tan、 cot甚至我手写一个只要不是直线的方程都可以实现【非线性变换】

确实,许多函数都可以实现非线性变换,包括sincostancot等。然而,ReLU(Rectified Linear Unit)函数在深度学习中被广泛使用,主要基于以下几个原因:

  1. 计算效率:ReLU函数非常简单,其数学表达式为f(x) = max(0, x)。这意味着在计算时只需要进行一个简单的比较和取最大值操作,这比其他复杂的非线性函数(如sincos等)要快得多。

  2. 稀疏性:ReLU函数会将所有负值置为0,这有助于引入稀疏性。在神经网络中,稀疏性通常被认为是一种有益的特性,因为它可以帮助模型更好地泛化,并减少过拟合的风险。同时,这也使得网络更加高效,因为许多神经元在某一时刻可能处于非激活状态(输出为0),从而节省了计算资源。

  3. 缓解梯度消失问题:在深度神经网络中,当使用像sigmoidtanh这样的饱和非线性函数时,梯度在反向传播过程中可能会逐渐消失,导致网络难以训练。而ReLU函数在正数区域内的导数为1,这意味着梯度可以顺畅地通过该层,从而缓解了梯度消失的问题。

  4. 生物学启示:ReLU函数在某种程度上模拟了生物神经元的激活方式。在生物学中,神经元通常只在输入信号达到一定阈值时才会被激活。ReLU函数通过设定一个阈值(在本例中为0),实现了类似的行为。

当然,ReLU函数也有其局限性,例如“死亡ReLU”问题,即当神经元在训练过程中一直处于非激活状态时,其权重可能无法得到有效的更新。为了解决这个问题,人们提出了一些ReLU的变种,如Leaky ReLU、Parametric ReLU等。

总的来说,尽管存在许多其他非线性函数可供选择,但ReLU函数因其简单性、高效性和在深度学习中的良好表现而成为了一个流行的选择。


7-文本分类情感分析任务激活

在文本分类、情感分析等自然语言处理任务中,特征之间的关系通常是通过神经网络模型来捕捉的。这些特征可以是词向量、词频、句子结构等,而激活函数则在这些模型中起到关键作用,帮助模型学习非线性关系,从而更有效地进行分类或情感分析。

特征之间的关系

  1. 线性关系:在某些简单的文本分类任务中,特征之间的关系可能是线性的。例如,词频特征可以直接用于线性回归或逻辑回归模型。
  2. 非线性关系:在更复杂的任务中,特征之间的关系往往是非线性的。例如,情感分析中,词语的顺序、上下文关系等都需要通过非线性模型来捕捉。
  3. 层次关系:在深度学习模型中,特征之间的关系通常是通过多层神经网络来捕捉的。每一层的输出都是对输入特征的更高层次的抽象表示。

常用的激活函数

  1. ReLU(Rectified Linear Unit)

    • 公式 f ( x ) = max ⁡ ( 0 , x ) f(x) = \max(0, x) f(x)=max(0,x)
    • 优点:计算简单,避免了梯度消失问题,广泛用于卷积神经网络(CNN)和全连接网络(FCN)。
    • 适用场景:适用于大多数文本分类和情感分析任务,尤其是在深层网络中。
  2. Sigmoid

    • 公式 f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1
    • 优点:输出范围在0到1之间,常用于二分类问题。
    • 缺点:容易出现梯度消失问题,尤其是在深层网络中。
    • 适用场景:适用于二分类的情感分析任务。
  3. Tanh(Hyperbolic Tangent)

    • 公式 f ( x ) = tanh ⁡ ( x ) = e x − e − x e x + e − x f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} f(x)=tanh(x)=ex+exexex
    • 优点:输出范围在-1到1之间,相对于Sigmoid函数,Tanh函数的梯度更大,训练速度更快。
    • 缺点:仍然存在梯度消失问题。
    • 适用场景:适用于一些需要输出的特征值在一定范围内的场景。
  4. Softmax

    • 公式 f ( x i ) = e x i ∑ j = 1 n e x j f(x_i) = \frac{e^{x_i}}{\sum_{j=1}^{n} e^{x_j}} f(xi)=j=1nexjexi
    • 优点:用于多分类问题,输出是一个概率分布,所有类别的概率和为1。
    • 适用场景:适用于多分类的文本分类和情感分析任务。
  5. Leaky ReLU

    • 公式 f ( x ) = max ⁡ ( 0.01 x , x ) f(x) = \max(0.01x, x) f(x)=max(0.01x,x)
    • 优点:在ReLU的基础上解决了“dying ReLU”问题,即当输入为负时,输出不再是0,而是一个小于0的值。
    • 适用场景:适用于需要处理负值特征的任务,可以提升模型的泛化能力。
  6. GELU(Gaussian Error Linear Unit)

    • 公式 f ( x ) = x ⋅ Φ ( x ) f(x) = x \cdot \Phi(x) f(x)=xΦ(x),其中 Φ ( x ) \Phi(x) Φ(x)是标准正态分布的累积分布函数。
    • 优点:在Transformer模型中表现良好,能够更好地处理复杂的非线性关系。
    • 适用场景:适用于Transformer等复杂的深度学习模型。

总结

  • 特征关系:在文本分类和情感分析中,特征之间通常是非线性关系,需要通过激活函数来捕捉这些关系。
  • 激活函数:常用的激活函数包括ReLU、Sigmoid、Tanh、Softmax、Leaky ReLU和GELU,选择合适的激活函数可以显著提升模型的性能。

在实际应用中,选择激活函数通常取决于任务的复杂度和模型的结构。对于简单的任务,ReLU和Sigmoid可能已经足够;而对于复杂的任务,使用GELU等更复杂的激活函数可能会带来更好的效果。


8-专业词汇解释

  1. 计算效率:ReLU函数非常简单,其数学表达式为f(x) = max(0, x)。这意味着在计算时只需要进行一个简单的比较和取最大值操作,这比其他复杂的非线性函数(如sincos等)要快得多。

  2. 稀疏性:ReLU函数会将所有负值置为0,这有助于引入稀疏性。在神经网络中,稀疏性通常被认为是一种有益的特性,因为它可以帮助模型更好地泛化,并减少过拟合的风险。同时,这也使得网络更加高效,因为许多神经元在某一时刻可能处于非激活状态(输出为0),从而节省了计算资源。

  3. 缓解梯度消失问题:在深度神经网络中,当使用像sigmoidtanh这样的饱和非线性函数时,梯度在反向传播过程中可能会逐渐消失,导致网络难以训练。而ReLU函数在正数区域内的导数为1,这意味着梯度可以顺畅地通过该层,从而缓解了梯度消失的问题。

  4. 生物学启示:ReLU函数在某种程度上模拟了生物神经元的激活方式。在生物学中,神经元通常只在输入信号达到一定阈值时才会被激活。ReLU函数通过设定一个阈值(在本例中为0),实现了类似的行为。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/64639.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QScreen在Qt5.15与Qt6.8版本下的区别

简述 QScreen主要用于提供与屏幕相关的信息。它可以获取有关显示设备的分辨率、尺寸、DPI&#xff08;每英寸点数&#xff09;等信息。本文主要是介绍Qt5.15与Qt6环境下&#xff0c;QScreen的差异&#xff0c;以及如何判断高DPI设备。 属性说明 logicalDotsPerInch&#xff1…

[HNCTF 2022 Week1]你想学密码吗?

下载附件用记事本打开 把这些代码放在pytho中 # encode utf-8 # python3 # pycryptodemo 3.12.0import Crypto.PublicKey as pk from hashlib import md5 from functools import reducea sum([len(str(i)) for i in pk.__dict__]) funcs list(pk.__dict__.keys()) b reduc…

shell8

until循环(条件为假的时候一直循环和while相反) i0 until [ ! $i -lt 10 ] doecho $i((i)) done分析 初始化变量&#xff1a; i0&#xff1a;将变量i初始化为0。 条件判断 (until 循环)&#xff1a; until [ ! $i -lt 10 ]&#xff1a;这里的逻辑有些复杂。它使用了until循环…

【游戏中orika完成一个Entity的复制及其Entity异步落地的实现】 1.ctrl+shift+a是飞书下的截图 2.落地实现

一、orika工具使用 1)工具类 package com.xinyue.game.utils;import ma.glasnost.orika.MapperFactory; import ma.glasnost.orika.impl.DefaultMapperFactory;/*** author 王广帅* since 2022/2/8 22:37*/ public class XyBeanCopyUtil {private static MapperFactory mappe…

【十进制整数转换为其他进制数——短除形式的贪心算法】

之前写过一篇用贪心算法计算十进制转换二进制的方法&#xff0c;详见&#xff1a;用贪心算法计算十进制数转二进制数&#xff08;整数部分&#xff09;_短除法求二进制-CSDN博客 经过一段时间的研究&#xff0c;本人又发现两个规律&#xff1a; 1、不仅仅十进制整数转二进制可…

【Harmony Next】多个图文配合解释DevEco Studio工程中,如何配置App相关内容,一次解决多个问题?

解决App配置相关问题列表 1、Harmony Next如何配置图标&#xff1f; 2、Harmony Next如何配置App名称&#xff1f; 3、Harmony Next如何配置版本号&#xff1f; 4、Harmony Next如何配置Bundle ID? 5、Harmony Next如何配置build号&#xff1f; 6、Harmony Next多语言配置在哪…

Mybatis分页插件的使用问题记录

项目中配置的分页插件依赖为 <dependency><groupId>com.github.pagehelper</groupId><artifactId>pagehelper</artifactId><version>5.1.7</version></dependency>之前的项目代码编写分页的方式为&#xff0c;通过传入的条件…

【技术干货】移动SDK安全风险及应对策略

移动SDK&#xff08;软件开发工具包&#xff09;已经成为应用开发中不可或缺的一部分。通过SDK&#xff0c;开发者能够快速集成分析、广告调度、音视频处理、社交功能和用户身份验证等常见功能&#xff0c;而无需从零开始构建。这不仅能节省时间和资源&#xff0c;还能提高开发…

易语言OCR银行卡文字识别

一.引言 文字识别&#xff0c;也称为光学字符识别&#xff08;Optical Character Recognition, OCR&#xff09;&#xff0c;是一种将不同形式的文档&#xff08;如扫描的纸质文档、PDF文件或数字相机拍摄的图片&#xff09;中的文字转换成可编辑和可搜索的数据的技术。随着技…

新能源汽车充电需求攀升,智慧移动充电服务有哪些实际应用场景?

在新能源汽车行业迅猛发展的今天&#xff0c;智慧充电桩作为支持这一变革的关键基础设施&#xff0c;正在多个实际应用场景中发挥着重要作用。从公共停车场到高速公路服务区&#xff0c;从企业园区到住宅小区&#xff0c;智慧充电桩不仅提供了便捷的充电服务&#xff0c;还通过…

QT多媒体开发(一):概述

Qt Multimedia 模块为多媒体编程提供支持。多媒体编程实现的功能主要包括播放音频和视频文件&#xff0c;通过麦克风录制音频&#xff0c;通过摄像头拍照和录像等。 QT6 中多媒体模块相比QT5变化较大&#xff0c;所以用QT6编译 QT5写的多媒体 程序基本无法通过。 Qt 5 多媒体模…

人才画像系统如何支撑企业的人才战略落地

在当今竞争激烈的商业环境中&#xff0c;企业的人才战略对于其长期发展至关重要。为了有效实施人才战略&#xff0c;企业需要一套精准、高效的人才管理工具&#xff0c;而人才画像系统正是满足这一需求的关键解决方案。本文将探讨人才画像系统如何支撑企业的人才战略落地&#…

基于Python3编写的Golang程序多平台交叉编译自动化脚本

import argparse import os import shutil import sys from shutil import copy2from loguru import loggerclass GoBuild:"""一个用于构建跨平台执行文件的类。初始化函数&#xff0c;设置构建的主文件、生成的执行文件名称以及目标平台。:param f: 需要构建的…

初学stm32 --- 定时器中断

目录 时钟选择&#xff1a; 内部时钟选择​编辑 时钟计算方法&#xff1a; 计数器模式 向下计数模式&#xff08;时钟分频因子1&#xff0c;ARR36&#xff09; 向上计数模式&#xff08;时钟分频因子1&#xff0c;ARR36&#xff09; 中央对齐计数模式&#xff08;时钟分频因…

Pytorch | 从零构建Vgg对CIFAR10进行分类

Pytorch | 从零构建Vgg对CIFAR10进行分类 CIFAR10数据集Vgg网络结构特点性能应用影响 Vgg结构代码详解结构代码代码详解特征提取层 _make_layers前向传播 forward 训练过程和测试结果代码汇总vgg.pytrain.pytest.py 前面文章我们构建了AlexNet对CIFAR10进行分类&#xff1a; Py…

Python从0到100(七十八):神经网络--从0开始搭建全连接网络和CNN网络

前言&#xff1a; 零基础学Python&#xff1a;Python从0到100最新最全教程。 想做这件事情很久了&#xff0c;这次我更新了自己所写过的所有博客&#xff0c;汇集成了Python从0到100&#xff0c;共一百节课&#xff0c;帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…

SAP ABAP-日期格式问题 SAP内部错误,反序列化JSON字符串时发生异常 值 20241215 不是根据 ABAP 的 XML 格式的有效日期

SAP ABAP-日期格式问题 SAP内部错误,反序列化JSON字符串时发生异常 值 20241215 不是根据 ABAP 的 XML 格式的有效日期 在SAP内部用 YYYYMMDD没有问题 外部传入参数

sql server索引优化语句

第一步 建一个测试表 --create table TestUsers --( -- Id int primary key identity(1,1), -- Username varchar(30) not null, -- Password varchar(10) not null, -- CreateDateTime datetime not null --)第二步 插入100w数据 大概1分钟执行时间 ----插入数据…

day-21 内核链表以及栈

1.昨日作业 1.删除指定节点 找到删除就完事了&#xff0c;双向可以停在删除处。 /***************************** 功能&#xff1a;删除指定结点&#xff08;通过姓名&#xff09;* 参数&#xff1a;phead&#xff1b;oldname; * 返回&#xff1a;成功0&#xff0c;失-1&…

我在广州学 Mysql 系列——有关 Mysql 函数的练习

ℹ️大家好&#xff0c;我是LXJ&#xff0c;通过Mysql各种函数的相关学习&#xff0c;本文将通过一些练习来巩固Mysql的函数~~ 明天就冬至啦&#xff0c;提前大家冬至快乐&#xff01;&#xff01;“差不多冬至&#xff0c;一早一晚还是有雨”~ 复习&#xff1a;&#x1f449;《…