2024年顶级小型语言模型前15名

本文,我们将深入了解2024年备受瞩目的十五款小型语言模型(SLMs),它们分别是Llama 3.1 8B、Gemma2、Qwen 2、Mistral Nemo、Phi-3.5等。这些SLMs以其精巧的体积和高效率著称,它们不需要依赖庞大的服务器资源,这与它们的大型语言模型(LLMs)对手形成了鲜明对比。它们为速度和实时性能而生,甚至能在智能手机、平板电脑或智能手表上流畅运行。

图片

来源:Lu et al., 2024(https://arxiv.org/pdf/2409.15790)

我们即将展开的旅程将带领我们检视这些SLMs的卓越之处、潜在的不足,以及它们各自独有的特色。

首先,让我们聚焦于Qwen2,这是一款涵盖0.5B、1B至7B参数范围的模型系列。对于追求极致轻量化应用的开发者而言,0.5B版本无疑是理想之选。而对于那些需要更强大模型来执行摘要或文本生成等任务的用户,7B版本将提供无与伦比的性能。Qwen2模型在速度与效率并重的实用场景中大放异彩,尤其适合对快速响应或资源受限的应用场景。

接下来,我们有Mistral Nemo 12B,这款拥有12B参数的模型在处理复杂的自然语言处理(NLP)任务,如语言翻译和实时对话系统方面表现出色。它与Falcon 40B、Chinchilla 70B等模型同台竞技,却能在无需庞大基础设施的条件下本地运行,实现了复杂性与实用性的完美结合。

Llama 3.1 8B,这款携带8B参数的模型,在功能与效率之间取得了令人赞叹的平衡。它在问答和情感分析等任务中表现出类拔萃。对于那些急需快速结果而又不愿牺牲计算能力的用户,Llama 3.1 8B提供了一个性能与速度并重的优选。

Pythia系列,参数从1.6亿延伸至28亿,这一系列模型专为推理和编程技能任务量身定制。对于软件开发者,Pythia在处理结构化、逻辑性任务方面的能力无人能出其右。它在编码和推理任务上的表现超越了GPT-Neo等其他模型,尽管在更广泛的语言任务中可能会有所波动。Pythia的公共训练透明度和定制选项令人印象深刻,它的灵活性使其成为适应特定需求的强有力工具。

Cerebras-GPT,这款参数在1.11亿至27亿间变动的高效快速模型,专为资源有限但对性能有高要求的环境设计。与GPT-3或LLaMA 13B等大型模型相比,Cerebras-GPT虽在广泛训练上或有不及,但其遵循Chinchilla缩放法则,展现出极高的计算效率。对于那些追求可扩展性和效率的用户,Cerebras-GPT无疑是最佳选择。

Phi-3.5,这款38亿参数的模型,以其128K令牌的上下文长度独树一帜。它能够处理长文档或多轮对话任务,且不会丢失上下文,同时支持多语言,成为Llama 13B和GPT-3.5等模型的强有力竞争者,且计算需求相对较低。它在文档摘要、多语言任务和逻辑推理方面的表现令人期待。

StableLM-Zephyr,这款30亿参数的小型语言模型,在提供精确性和速度方面表现出色。它在边缘系统或资源受限设备中,面对需要快速决策的环境时,能提供出色的表现。StableLM-Zephyr在推理甚至角色扮演任务中同样游刃有余,虽然在处理写作或编码等复杂任务时可能不及大型模型,但考虑到其体积,它的表现已足够令人称赞。若速度和效率是您的首要考量,StableLM-Zephyr无疑是个坚实的选择。

TinyLlama,这款11亿参数的紧凑模型,以其出色的效率在移动和边缘设备上的表现令人印象深刻。在现实世界的任务中,尤其是在常识推理方面,TinyLlama甚至超越了Pythia-1.4B等模型。尽管它可能缺乏LLaMA 13B等大型模型的原始计算能力,但它在性能与资源效率之间取得了巧妙的平衡,使其成为资源受限环境中的理想选择。

MobileLLaMA,这款为移动和低功耗设备设计的LLaMA专用版本,拥有14亿参数,旨在在性能与效率间找到平衡点。它针对移动设备中的低延迟AI应用进行了优化。无论是MobileLLaMA-1.4B还是MobileLLaMA-2.7B版本,都在速度上超越了TinyLLaMA 1.1B等小型模型,并与OpenLLaMA 3B不相上下,且速度提升约40%。对于需要设备上实时AI的用户,MobileLLaMA无疑是完美的伴侣。

LaMini-GPT,这款参数介于7.74亿至15亿的模型,专为多语言任务设计,它在资源受限的环境中表现出色,能够处理多种语言而不需要大量计算资源。LaMini-GPT通过从GPT家族的大型模型中进行知识蒸馏而开发,这使得它在遵循指令的任务中表现出色。尽管它在特定任务上表现出色,但对于需要深入上下文理解或更广泛文本生成的应用,它可能不是最佳选择。如果您寻求的是快速且高效的解决方案,尤其是在多语言场景下,LaMini-GPT是一个可靠的选择。

Gemma2,这款20亿参数的模型,若您考虑本地部署,它将展现出卓越的性能。它轻量级且高效,非常适合文本生成或翻译等任务。与OpenAI o1-preview等重量级选手相比,Gemma2更专注于实时应用而非复杂推理。对于边缘计算,它是GPT-3.5或Llama 65B等资源密集型模型的完美替代品。

MiniCPM,这款参数在10亿至40亿之间的模型,在性能与资源效率之间取得了良好的平衡。它旨在轻松处理一般语言任务,并在众多应用中提供可靠的性能,是一个全能的选择。MiniCPM虽小,但其性能可与Mistral-7B和LLaMA 7B等大型模型相媲美。它特别针对英语和中文的语言处理进行了优化,使其成为资源有限环境中的高效轻量级替代品。

OpenELM,这款参数在2.7亿至30亿之间的灵活且可适应的模型,专为需要多任务处理和低延迟响应的环境设计。由苹果公司开发,OpenELM专注于能源效率和设备上的AI应用。它与MobiLlama和OLMo等模型竞争,在针对特定任务进行调整时显示出显著的改进。凭借其广泛的参数范围,OpenELM针对更小、更受限的环境进行了优化。

DCLM,这款10亿参数的模型,专为常识推理设计。它在需要理解和逻辑推断的真实世界任务中表现出色。DCLM在语言理解和推理方面表现出色,尤其是其70亿参数版本。它与LLaMA 2 (7B)和Mistral 7B等模型竞争,在常识推理和逻辑推断任务中表现同样出色。DCLM针对需要效率和较少计算资源的真实世界应用进行了高度优化,因此当您拥有需要强大性能而不需要重型基础设施的环境时,DCLM是一个很好的选择。

Fox,这款16亿参数的模型,专为速度和效率而生。它为移动应用优化,保持低延迟至关重要。Fox在不消耗过多计算能力的情况下提供快速响应。

模型名称参数开源主要特点
Qwen20.5B, 1B, 7B可扩展,适用于各种任务
Mistral Nemo 12B12B复杂的自然语言处理任务,本地部署
Llama 3.1 8B8B是*平衡性能和效率
Pythia160M - 2.8B专注于推理和编码
Cerebras-GPT111M - 2.7B计算效率高,遵循Chinchilla缩放法则
Phi-3.53.8B是**长上下文长度(128K令牌),多语言
StableLM-zephyr3B快速推理,边缘系统高效
TinyLlama1.1B移动和边缘设备高效
MobileLLaMA1.4B为移动和低功耗设备优化
LaMini-GPT774M - 1.5B多语言,指令跟随任务
Gemma29B, 27B本地部署,实时应用
MiniCPM1B - 4B平衡性能,英文和中文优化
OpenELM270M - 3B多任务处理,低延迟,节能
DCLM1B常识推理,逻辑推理
Fox1.6B为移动应用速度优化

通过这个表格,我们总结了上述所有内容,展示了各模型的参数、开源状态和主要特点。这些SLMs在许多方面证明了,规模小并不意味着能力弱,反而在很多情况下,它们更加智能和灵活。预计这些SLMs将更多地融入到我们的日常生活中。so,找到合适的模型来完成工作是关键——在很多情况下,合适的模型可能只是小而敏捷的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/63044.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

P3916 图的遍历(Tarjan缩点和反向建边)

P3916 图的遍历 - 洛谷 | 计算机科学教育新生态 写法一:Tarjan 思路:先运用Tarjan算法得到每个连通块中最大的编号,然后对每个连通块进行缩点重新建图,进行dfs,得到缩点后的连通块能够达到的最大编号。 Code: conste…

Android ConstraintLayout 约束布局的使用手册

目录 前言 一、ConstraintLayout基本介绍 二、ConstraintLayout使用步骤 1、引入库 2、基本使用,实现按钮居中。相对于父布局的约束。 3、A Button 居中展示,B Button展示在A Button正下方(距离A 46dp)。相对于兄弟控件的约束…

三步入门Log4J 的使用

本篇基于Maven 的Project项目&#xff0c; 快速演示Log4j 的导入和演示。 第一步&#xff1a; 导入Log4j依赖 <dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-api</artifactId><version>2.24.2</version&…

【强化学习入门笔记】1.5 贝尔曼最优公式

本系列为学习赵世钰老师的《强化学习的数学原理》所作的学习笔记. 课程视频网址&#xff1a;https://space.bilibili.com/2044042934 1.5.1 定义 1.5.1.1 Contraction mapping theorem (收缩映射定理) fixed point(不动点) 如果 x ∗ x^* x∗满足下式, x ∗ x^* x∗称之为…

Nmap脚本使用

Nmap是主机扫描工具&#xff0c;他的图形化界面是Zenmap&#xff0c;分布式框架为Dnamp。 Nmap可以完成以下任务&#xff1a; 主机探测端口扫描版本检测系统检测支持探测脚本的编写 Nmap在实际中应用场合如下&#xff1a;通过对设备或者防火墙的探测来审计它的安全性探测目标主…

python源码实例游戏开发小程序办公自动化网络爬虫项目开发源码(250+个项目、26.6GB)

文章目录 源代码下载地址项目介绍预览 项目备注源代码下载地址 源代码下载地址 点击这里下载源码 项目介绍 python源码实例游戏开发小程序办公自动化网络爬虫项目开发源码(250个项目、26.6GB) 预览 项目备注 1、该资源内项目代码都经过测试运行成功&#xff0c;功能ok的情…

MySql:理解数据库

目录 一、什么是数据库 第一层理解 第二层理解 第三层理解 二、Linux下的数据库 三、基本认识 登录数据库时&#xff0c; mysql -u root -h 127.0.0.1 -P 3306 -p -h指定MySql服务器所在主机&#xff0c;若在本地则为回环地址。-P表示目标主机上MySql服务端口号 一般简单…

BERT模型的输出格式探究以及提取出BERT 模型的CLS表示,last_hidden_state[:, 0, :]用于提取每个句子的CLS向量表示

说在前面 最近使用自己的数据集对bert-base-uncased进行了二次预训练&#xff0c;只使用了MLM任务&#xff0c;发现在加载训练好的模型进行输出CLS表示用于下游任务时&#xff0c;同一个句子的输出CLS表示都不一样&#xff0c;并且控制台输出以下警告信息。说是没有这些权重。…

Vue框架开发一个简单的购物车(Vue.js)

让我们利用所学知识来开发一个简单的购物车 &#xff08;记得暴露属性和方法&#xff01;&#xff01;&#xff01;&#xff09; 首先来看一下最基本的一个html框架 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"&…

系统加固-Linux不允许用户使用密码登录,只能使用密钥登录

一、密码登录的安全隐患 传统的密码登录方式&#xff0c;尽管简单直接&#xff0c;却存在诸多安全隐患。首先&#xff0c;密码本身容易被猜测或通过暴力破解手段获得。特别是当用户设置了过于简单或常见的密码时&#xff0c;系统面临的安全风险将显著增加。其次&#xff0c;密…

大数据实验E5HBase:安装配置,shell 命令和Java API使用

实验目的 熟悉HBase操作常用的shell 命令和Java API使用&#xff1b; 实验要求 掌握HBase的基本操作命令和函数接口的使用&#xff1b; 实验平台 操作系统&#xff1a;Linux&#xff08;建议Ubuntu16.04或者CentOS 7 以上&#xff09;&#xff1b;Hadoop版本&#xff1a;3…

【Vivado】xdc约束文件编写

随手记录一下项目中学到的约束文件编写技巧。 时序约束 创建生成时钟 参考链接&#xff1a; Vivado Design Suite Tcl Command Reference Guide (UG835) Vivado Design Suite User Guide: Using Constraints (UG903) 通过Clocking Wizard IP创建的时钟&#xff08;MMCM或…

Electron + Vue 简单实现窗口程序(Windows)从零到一

前言 想做一个桌面应用程序&#xff0c;一直没有找到简单快速可上手的框架。刚好有点前端的底子&#xff0c;就发现了Electron。关于Electron的介绍&#xff0c;请移步 https://www.electronjs.org/ 查阅。 简单来说&#xff0c;引用官网的话&#xff0c;Electron是一个使用 …

健康养生生活

在快节奏的现代生活中&#xff0c;健康养生愈发成为人们关注的焦点。它不仅是一种生活方式&#xff0c;更是对生命质量的珍视与呵护。 健康养生&#xff0c;饮食为先。合理的膳食结构是维持身体健康的基石。我们应确保每餐营养均衡&#xff0c;增加蔬菜、水果、全谷物以及优质蛋…

如何避免数据丢失:服务器恢复与预防策略

在当今数字时代&#xff0c;数据对于个人和企业来说都至关重要。数据丢失可能会导致严重的财务损失、业务中断甚至法律责任。因此&#xff0c;采取措施防止数据丢失至关重要。本文将讨论服务器数据丢失的常见原因以及如何防止数据丢失的有效策略。 服务器数据丢失的常见原因 服…

网站访问统计A/B测试与数据分析

在网站运营中&#xff0c;访问统计和数据分析是优化用户体验和提高转化率的关键工具。A/B测试作为一种数据驱动的方法&#xff0c;能够帮助网站运营者验证设计和内容的有效性。A/B测试的基本原理是同时展示两个不同的版本&#xff08;A和B&#xff09;&#xff0c;通过比较它们…

芯驰X9SP与汽车麦克风-打造无缝驾驶体验

当今汽车技术的进步不仅提升了驾驶体验&#xff0c;还改变了我们与车辆互动的方式。汽车麦克风作为车内语音控制系统的重要组成部分&#xff0c;正逐渐成为现代汽车的标配。 技术原理 汽车麦克风主要依赖于声音传感技术&#xff0c;通常包括电容式麦克风和动圈式麦克风。这些…

界面控件Syncfusion Essential Studio®现在已完全支持 .NET 9

Syncfusion Essential Studio现在完全支持 .NET 9&#xff0c;可最新版本2024 Volume 3 版本中使用&#xff01;通过此更新&#xff0c;Blazor、.NET MAUI、WPF、WinForms、WinUI和ASP.NET Core 平台中的 Syncfusion 组件以及文档处理库已准备好让您利用 .NET 9 中的最新功能。…

剑指offer(专项突破)---字符串

总目录&#xff1a;剑指offer&#xff08;专项突破&#xff09;---目录-CSDN博客 1.字符串的基本知识 C语言中&#xff1a; 函数名功能描述strcpy(s1, s2)将字符串s2复制到字符串s1中&#xff0c;包括结束符\0&#xff0c;要求s1有足够空间容纳s2的内容。strncpy(s1, s2, n)…

yarn : 无法加载文件 E:\node\node_global\yarn.ps1,因为在此系统上禁止运行脚本

先确保安装了yarn —— npm install -g yarn 终端输入set-ExecutionPolicy RemoteSigned 若要在本地计算机上运行您编写的未签名脚本和来自其他用户的签名脚本&#xff0c;请使用以下命令将计算机上的执行策略更改为RemoteSigned 再去使用yarn okk~