【机器学习】机器学习的基本分类-监督学习-决策树-C4.5 算法

C4.5 是由 Ross Quinlan 提出的决策树算法,是对 ID3 算法的改进版本。它在 ID3 的基础上,解决了以下问题:

  1. 处理连续型数据:支持连续型特征,能够通过划分点将连续特征离散化。
  2. 处理缺失值:能够在特征值缺失的情况下继续构建决策树。
  3. 偏好多值特征的问题:采用信息增益比(Gain Ratio)替代信息增益,减少对多值特征的偏好。
  4. 生成剪枝后的树:通过后剪枝技术,降低过拟合风险。

1. 核心改进

(1) 信息增益比

C4.5 使用**信息增益比(Gain Ratio)**代替 ID3 的信息增益来选择最优特征。

  • 信息增益 IG(D, A):

IG(D, A) = H(D) - H(D|A)

  • 分裂信息 SI(A):

SI(A) = -\sum_{v \in \text{Values}(A)} \frac{|D_v|}{|D|} \log_2 \frac{|D_v|}{|D|}

其中:

  • |D_v|/|D|:特征 AAA 的第 vvv 个取值的样本比例。

  • 信息增益比 GR(D, A):

GR(D, A) = \frac{IG(D, A)}{SI(A)}

分裂信息 SI(A) 是一种归一化因子,用于惩罚取值较多的特征,降低它们被优先选择的可能性。


(2) 连续型特征处理
  • 对连续特征,C4.5 会尝试在特征值的每个分割点(例如两个样本值之间的中点)进行划分。
  • 对每个划分点计算信息增益比,选择最佳划分点。

假设某连续特征 A 的值为 \{v_1, v_2, \dots, v_n\},排序后尝试以下划分点:

划分点 = \frac{v_i + v_{i+1}}{2}, \quad i = 1, 2, \dots, n-1


(3) 处理缺失值

对于缺失值,C4.5 使用以下策略:

  1. 在计算信息增益比时,只考虑特征值非缺失的样本。
  2. 当需要划分含有缺失值的样本时,将这些样本按概率分配到各个子节点。

(4) 剪枝
  • C4.5 采用**后剪枝(Post-Pruning)**技术,通过校验数据集评估剪枝后的树是否提高性能。
  • 剪枝的目标是降低过拟合风险,增强模型泛化能力。

2. C4.5 算法流程

  1. 输入:训练数据集 D、特征集 A。
  2. 递归构造树
    1. 计算当前数据集 D 的信息熵 H(D)。
    2. 对每个特征 A ∈ A:
      • 若 A 为离散特征,计算信息增益比。
      • 若 A 为连续特征,尝试每个划分点,计算信息增益比。
    3. 选择信息增益比最大的特征 A^*,作为当前节点的分裂特征。
    4. 根据 A^* 的取值(或划分点)划分数据集 D。
    5. 对每个子数据集递归构造子树。
  3. 剪枝
    • 基于校验集对生成的决策树进行剪枝,移除不显著的分支。
  4. 输出:剪枝后的决策树。

3. 示例

数据示例

假设有以下训练数据集:

天气温度湿度风力是否运动
晴天30
晴天32
阴天28
雨天24正常
雨天20正常

目标:构造决策树判断是否运动。

步骤
  1. 计算根节点的熵

    H(D) = -\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5} \approx 0.971
  2. 对每个特征计算信息增益比

    • 天气(离散特征)

      • 计算天气的条件熵 H(D|\text{Weather})
      • 计算信息增益比 GR(D, \text{Weather})
    • 温度(连续特征)

      • 尝试划分点:272727、303030、333333。
      • 对每个划分点计算信息增益比,选择最佳划分点。
    • 湿度、风力

      • 按相同方法计算。
  3. 选择信息增益比最大的特征作为分裂特征,生成子节点。

  4. 对子节点递归分裂,直至满足停止条件(如样本类别纯度高或无特征可分)。

  5. 后剪枝

    • 对生成的树在校验集上进行性能评估,剪去对性能贡献较小的分支。

4. 算法特点

优点
  1. 支持离散和连续特征,适用范围更广。
  2. 减少对多值特征的偏好,提高选择的公平性。
  3. 能处理缺失值,增强算法的鲁棒性。
  4. 剪枝减少过拟合,提高泛化能力。
缺点
  1. 计算复杂度高,特别是连续特征的划分点尝试增加了计算量。
  2. 不支持大规模数据时的并行化。
  3. 剪枝过程可能需要额外的校验集。

5. 代码实现

以下是一个简单的 Python 实现,用于计算信息增益比并构造 C4.5 决策树:

import numpy as np# 计算熵
def entropy(labels):total = len(labels)counts = {}for label in labels:counts[label] = counts.get(label, 0) + 1return -sum((count / total) * np.log2(count / total) for count in counts.values())# 计算信息增益比
def information_gain_ratio(data, labels, feature_index):total_entropy = entropy(labels)feature_values = [row[feature_index] for row in data]unique_values = set(feature_values)split_info = 0conditional_entropy = 0for value in unique_values:subset = [labels[i] for i in range(len(data)) if data[i][feature_index] == value]proportion = len(subset) / len(data)conditional_entropy += proportion * entropy(subset)split_info -= proportion * np.log2(proportion)info_gain = total_entropy - conditional_entropyreturn info_gain / split_info if split_info != 0 else 0# 示例数据
data = [["晴天", 30, "高", "弱"],["晴天", 32, "高", "强"],["阴天", 28, "高", "弱"],["雨天", 24, "正常", "弱"],["雨天", 20, "正常", "强"]
]
labels = ["否", "否", "是", "是", "否"]# 特征索引(天气、温度、湿度、风力)
for i in range(4):print(f"Feature {i}, Gain Ratio: {information_gain_ratio(data, labels, i):.4f}")

输出结果 

Feature 0, Gain Ratio: 0.3751
Feature 1, Gain Ratio: 0.4182
Feature 2, Gain Ratio: 0.0206
Feature 3, Gain Ratio: 0.4325

6. 总结

C4.5 是 ID3 的改进版本,针对实际问题的需求(连续特征、缺失值、多值特征偏好等)做了多项优化。尽管计算复杂度高,但其广泛用于分类问题,成为现代决策树算法的基础之一(如 CART)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/62943.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

运维之网络安全抓包—— WireShark 和 tcpdump

为什么要抓包?何为抓包? 抓包(packet capture)就是将网络传输发送与接收的数据包进行截获、重发、编辑、转存等操作,也用来检查网络安全。抓包也经常被用来进行数据截取等。为什么要抓包?因为在处理 IP网络…

MongoDB 索引类型详解

MongoDB 索引类型详解 在 MongoDB 中,索引是提高查询效率、优化数据库性能的重要手段。MongoDB 支持多种类型的索引,每种索引类型适用于不同的查询需求和场景。本文将详细介绍 MongoDB 中几种常见的索引类型、示例及其限制。 1. 单字段索引&#xff08…

2023年MathorCup高校数学建模挑战赛—大数据竞赛B题电商零售商家需求预测及库存优化问题求解全过程文档及程序

2023年MathorCup高校数学建模挑战赛—大数据竞赛 B题 电商零售商家需求预测及库存优化问题 原题再现: 电商平台存在着上千个商家,他们会将商品货物放在电商配套的仓库,电商平台会对这些货物进行统一管理。通过科学的管理手段和智能决策&…

cocotb pytest

打印python中的print , 应该使用 pytest -s pytest --junitxmltest_report.xml --htmlreport.html

【Linux】进程间关系与守护进程

🌎进程间关系与守护进程 文章目录: 进程间关系与守护进程 进程组     会话       认识会话       会话ID       创建会话 控制终端     作业控制       作业(job)和作业控制(Job Control)       作业号及作业过程…

RuoYi-Vue部署到Linux服务器(Jar+Nginx)

一、本地环境准备 源码下载、本地Jdk及Node.js环境安装,参考以下文章。 附:RuoYi-Vue下载与运行 二、服务器环境准备 1.安装Jdk 附:JDK8下载安装与配置环境变量(linux) 2.安装MySQL 附:MySQL8免安装版下载安装与配置(linux) 3.安装Redis 附:Redis下载安装与配置(…

QT5.14 QML串口助手

基于 QML的 串口调试助手 这个代码有缺失,补了部分代码 ASCII HEX 工程共享, Qt版本 5.14.1 COM_QML 通过百度网盘分享的文件:COM_QML.zip 链接:https://pan.baidu.com/s/1MH2d6gIPDSoaX-syVWZsww?pwd5tge 提取码:…

IOS ARKit进行图像识别

先讲一下基础控涧,资源的话可以留言,抽空我把它传到GitHub上,这里没写收积分,竟然充值才能下载,我下载也要充值,牛! ARSCNView 可以理解画布或者场景 1 配置 ARWorldTrackingConfiguration AR追…

常用排查工具使用

1.spy++ Microsoft Spy++是一个非常好的查看Windows操作系统的窗口、消息、进程、线程信息的工具,简单易用,功能强大。 在vs的工具中默认安装,还可以监控到隐层窗口,通过查看窗口的属性可以获得更多信息,包括规格、窗口、类、进程等信息,可以帮助排查相关窗口的问题。 2…

“Encrypt”属性设置为“true”且 “trustServerCertificate”属性设置为“false”,但驱动程序无法使用安全套接字层 (SSL) 加密与 SQL Server 建立安全

com.microsoft.sqlserver.jdbc.SQLServerException: “Encrypt”属性设置为“true”且 “trustServerCertificate”属性设置为“false”,但驱动程序无法使用安全套接字层 (SSL) 加密与 SQL Server 建立安全连接:错误:PKIX path building failed: sun.security.provi…

【RK3588 Linux 5.x 内核编程】-内核高分辨率定时器

内核高分辨率定时器 文章目录 内核高分辨率定时器1、高分辨率定时器介绍2、高分辨率定时器API2.1 初始化定时器2.2 启动定时器2.3 停止定时器2.4 改变定时器超时时间2.5 定时器状态检查3、驱动实现4、驱动验证在前面的文章中,我们知道了如果在Linux内核中使用定时器。本文将详…

C语言第十五周课——课堂练习

目录 1.输出特定图形 2.求三个数的最小值 3.思考题 1.输出特定图形 要求&#xff1a;输出下面形状在控制台 * * * * * * * * * * * * * * * #include <stdio.h> int main() {int i, j;// 外层循环控制行数for (i 1; i < 5; i){// 内层循环控制每行的星号个数for (…

数据结构 (20)二叉树的遍历与线索化

一、二叉树的遍历 遍历是对树的一种最基本的运算&#xff0c;所谓遍历二叉树&#xff0c;就是按一定的规则和顺序走遍二叉树的所有节点&#xff0c;使每一个节点都被访问一次&#xff0c;而且只被访问一次。二叉树的遍历方式主要有四种&#xff1a;前序遍历、中序遍历、后序遍历…

sscanf与sprintf函数

本期介绍&#x1f356; 主要介绍&#xff1a;sscanf()、sprintf()这对输入/输出函数&#xff0c;并详细讲解了这两个函数的应用场景。 概述&#x1f356; 在C语言的输出和输入库中&#xff0c;有三对及其相似的库函数&#xff1a;printf()、scanf()、fprintf()、fscanf()、spri…

基于链表的基础笔试/面试题

1. 反转链表 问题描述&#xff1a;反转一个单向链表。 示例&#xff1a; 输入&#xff1a;1 → 2 → 3 → 4 → 5 输出&#xff1a;5 → 4 → 3 → 2 → 1 class ListNode {int val;ListNode next;ListNode(int x) {val x;} }public class LinkedList {public ListNode …

[高等数学学习记录] 泰勒公式

1 知识点 1.1 要求 为简化计算, 通常用多项式近似表达复杂函数: 设函数 f ( x ) f(x) f(x) 在含有 x 0 x_0 x0​ 的开区间内具有 ( n 1 ) (n1) (n1) 阶导数, 试找出一个关于 ( x − x 0 ) (x-x_0) (x−x0​) 的 n n n 次多项式 p n ( x ) p_n(x) pn​(x) 近似表达 f…

Linux条件变量线程池详解

一、条件变量 【互斥量】解决了线程间同步的问题&#xff0c;避免了多线程对同一块临界资源访问产生的冲突&#xff0c;但同一时刻对临界资源的访问&#xff0c;不论是生产者还是消费者&#xff0c;都需要竞争互斥锁&#xff0c;由此也带来了竞争的问题。即生产者和消费者、消费…

【错误记录】jupyter notebook打开后服务器错误Forbidden问题

如题&#xff0c;在Anaconda Prompt里输入jupyter notebook后可以打开浏览器&#xff0c;但打开具体项目后就会显示“服务器错误&#xff1a;Forbidden”&#xff0c;终端出现&#xff1a; tornado.web.HTTPError: HTTP 403: Forbidden 查看jupyter-server和jupyter notebook版…

shodan2-批量查找CVE-2019-0708漏洞

声明&#xff01; 学习视频来自B站up主 泷羽sec 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团队无关&#…

PostgreSQL实现透视表查询

PostgreSQL 8.3版本发布时&#xff0c;引入了一个名为tablefunc的新扩展。这个扩展提供了一组非常有趣的函数。其中之一是交叉表函数&#xff0c;用于创建数据透视表。这就是我们将在本文中讨论的内容。 需求说明 解释此函数如何工作的最简单方法是使用带有数据透视表的示例…