【机器学习】机器学习的基本分类-监督学习-决策树-ID3 算法

ID3(Iterative Dichotomiser 3)是决策树的一种构造算法,由 Ross Quinlan 在 1986 年提出。它主要用于分类问题,通过信息增益选择特征来构建决策树。ID3 假设数据是离散型特征,且不支持连续型数据。


1. 核心思想

  1. 划分标准

    • 使用 信息增益(Information Gain)作为特征选择的标准。
    • 选择信息增益最大的特征进行分裂。
  2. 递归构造

    • 从根节点开始,每次根据信息增益选择特征,生成子节点。
    • 对每个子节点重复这一过程,直到满足停止条件(例如数据不可再分,或者所有样本类别相同)。

2. 信息增益

信息增益基于**信息熵(Entropy)**的概念:

信息熵的定义

信息熵衡量数据集的不确定性:

H(D) = - \sum_{i=1}^C p_i \log_2(p_i)

  • D:数据集。
  • C:类别数。
  • p_i:数据集中属于第 i 类的概率。
条件熵

划分数据集 D 后的条件熵为:

H(D|A) = \sum_{v \in \text{Values}(A)} \frac{|D_v|}{|D|} H(D_v)

  • A:划分特征。
  • D_v​:特征 A 的值为 v 时的子数据集。
  • |D_v|/|D|:数据划分到 v 类的比例。
信息增益公式

信息增益是划分前后信息熵的减少:

IG(D, A) = H(D) - H(D|A)

  • H(D):划分前的熵。
  • H(D|A):划分后的条件熵。
  • 特征 A 的信息增益越大,说明使用 A 划分后数据集的不确定性降低越多,划分效果越好。

3. ID3 算法步骤

  1. 输入

    • 数据集 D(包含样本和对应的类别标签)。
    • 特征集 A。
  2. 步骤

    1. 计算当前数据集的熵 H(D)。
    2. 对于每个特征 A ∈ A:
      • 计算特征 A 的信息增益 IG(D, A)。
    3. 选择信息增益最大的特征 A^*,作为当前节点的分裂特征。
    4. 根据特征 A^* 的每个取值 v,划分数据集:
      • 如果子数据集 D_v​ 为空,设置叶节点为多数类别。
      • 如果子数据集 D_v​ 非空,递归构造子树。
    5. 当满足停止条件时,停止分裂。
  3. 输出

    • 决策树。

4. 算法特点

优点
  1. 简单易实现:基于熵和信息增益的数学原理,计算相对直观。
  2. 解释性强:生成的决策树规则可以直接解释分类依据。
缺点
  1. 对连续特征无直接支持:需要离散化连续特征。
  2. 易过拟合:树可能过于复杂,适应训练数据的噪声。
  3. 偏好多值特征:特征的可能取值越多,信息增益往往越高,可能导致模型偏向这些特征。

5. 示例

数据示例

假设有以下样本数据:

天气温度湿度风力是否运动
晴天
晴天
阴天
雨天
雨天正常

目标:构造决策树判断是否运动。


计算步骤
  1. 计算根节点的熵 H(D) 数据集中是否运动的比例为:

    • P(是) = 3/5, P(否) = 2/5。
      熵为:
    H(D) = -\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5} \approx 0.971
  2. 计算每个特征的条件熵 H(D|A) 和信息增益

    • 天气(Weather)

      • H(D|\text{Sunny}) = -1 \log_2(1) = 0
      • 对所有天气取值加权计算条件熵,得到 H(D|\text{Weather})
      • 信息增益 IG(D, \text{Weather}) = H(D) - H(D|\text{Weather})
    • 温度(Temperature)

      • 类似方法计算温度的条件熵和信息增益。
    • 湿度、风力

      • 按相同方法计算。
  3. 选择信息增益最大的特征

    • A^* = \text{Weather},构造根节点。
  4. 递归分裂子数据集

    • 对子数据集重复计算,直到满足停止条件。

 6. 代码实现

Python 示例
from math import log2# 计算熵
def entropy(labels):total = len(labels)counts = {}for label in labels:counts[label] = counts.get(label, 0) + 1return -sum((count / total) * log2(count / total) for count in counts.values())# 计算信息增益
def information_gain(data, labels, feature_index):total_entropy = entropy(labels)feature_values = [row[feature_index] for row in data]unique_values = set(feature_values)conditional_entropy = 0for value in unique_values:subset = [labels[i] for i in range(len(data)) if data[i][feature_index] == value]conditional_entropy += (len(subset) / len(data)) * entropy(subset)return total_entropy - conditional_entropy# 示例数据
data = [["晴天", "高", "高", "弱"],["晴天", "高", "高", "强"],["阴天", "高", "高", "弱"],["雨天", "中", "高", "弱"],["雨天", "低", "正常", "弱"]
]
labels = ["否", "否", "是", "是", "是"]# 特征索引(天气、温度、湿度、风力)
for i in range(4):print(f"Feature {i}, Information Gain: {information_gain(data, labels, i):.4f}")

输出结果

Feature 0, Information Gain: 0.9710
Feature 1, Information Gain: 0.4200
Feature 2, Information Gain: 0.1710
Feature 3, Information Gain: 0.3219

7. 扩展

  1. C4.5 算法

    • 使用信息增益比替代信息增益,解决偏好多值特征问题。
    • 支持连续型特征。
  2. CART 算法

    • 支持分类与回归,使用基尼指数或均方误差。

ID3 是决策树的早期版本,适用于简单的分类问题,但由于其限制(如无法处理连续型特征、易过拟合),后续算法(如 C4.5 和 CART)进一步改进了 ID3。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/62862.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JAVA |日常开发中读写XML详解

JAVA |日常开发中读写XML详解 前言一、XML 简介二、在 Java 中读取 XML2.1 使用 DOM(Document Object Model)方式读取 XML2.2 使用 SAX(Simple API for XML)方式读取 XML 三、在 Java 中写入 XML3.1 使用 DOM 方式写入…

ISAAC SIM踩坑记录--Omniverse Launcher添加代理

最近Omniverse Launcher不知道又抽什么疯,在Exchange界面安装各种软件都不成功,报错如下: FetchError: request to https://launcher-index-prod.s3.amazonaws.com/en/components.json failed, reason: Client network socket disconnected…

ECharts柱状图-交错正负轴标签,附视频讲解与代码下载

引言: 在数据可视化的世界里,ECharts凭借其丰富的图表类型和强大的配置能力,成为了众多开发者的首选。今天,我将带大家一起实现一个柱状图图表,通过该图表我们可以直观地展示和分析数据。此外,我还将提供…

07《缓存》计算机组成与体系结构 系列课

目录 深入了解缓存内存 缓存的重要性 游戏中的存储需求与主内存 虚拟内存和按需分页 现代系统中的多级缓存 缓存级别的大小与速度 缓存相关的术语 缓存命中与未命中 页面命中与缺页 局部性原理 结语 深入了解缓存内存 大家好,欢迎来到今天的课程。上节课…

FPGA实战篇(触摸按键控制LED灯)

1.触摸按键简介 触摸按键主要可分为四大类:电阻式、电容式、红外感应式以及表面声波式。根据其属性的不同,每种触摸按键都有其合适的使用领域。 电阻式触摸按键由多块导电薄膜按照按键的位置印制而成,但由于耐用性较差且维护复杂&#xff0c…

java基础概念47-ArrayList、LinkList和迭代器

一、ArrayList集合 1-1、ArrayList的两种添加信息的方式 1-2、ArrayList集合底层逻辑 1、利用空参创建的集合,在底层创建一个默认长度为0的数组 2、添加第一个元素时,底层会创建一个新的长度为10的数组 3、存满时,会扩容1.5倍。 4、如果…

C++学习日记---第16天

笔记复习 1.C对象模型 在C中,类内的成员变量和成员函数分开存储 我们知道,C中的成员变量和成员函数均可分为两种,一种是普通的,一种是静态的,对于静态成员变量和静态成员函数,我们知道他们不属于类的对象…

Java基础之网络编程:开启网络通信的神秘之门

一、网络编程概述 网络编程是通过计算机网络进行数据传输和通信的编程技术,在 Java 中,我们可以使用丰富的网络编程功能和 API 来实现不同计算机之间的数据交互。 Java 网络编程是指在 Java 语言中使用网络协议和 API 进行网络通信的编程技术。Java 网络…

Go 语言函数编程指南:定义、调用技巧与返回值机制

🐇明明跟你说过:个人主页 🏅个人专栏:《Go语言探索之旅》🏅 🔖行路有良友,便是天堂🔖 目录 一、引言 1、Go语言简介 2、Go语言的特点 二、函数定义 1、Go语言函数定义 2、函…

在办公室环境中用HMD替代传统显示器的优势

VR头戴式显示器(HMD)是进入虚拟现实环境的一把钥匙,拥有HMD的您将能够在虚拟现实世界中尽情探索未知领域,正如如今的互联网一样,虚拟现实环境能够为您提供现实中无法实现的或不可能实现的事。随着技术的不断进步&#…

Springboot项目中子模块maven层级不一致的问题

(一)问题描述 campus-common、campus-pojo、campus-server都是campus-flower-system的子模块,但是只有campus-common在campus-flower-system下 (二)解决方法 打开父工程(我这里是campus-flower-system&…

SpringBoot 架构下的在线家具商城:规划与实践之路

第1章 绪论 1.1选题动因 当前的网络技术,软件技术等都具备成熟的理论基础,市场上也出现各种技术开发的软件,这些软件都被用于各个领域,包括生活和工作的领域。随着电脑和笔记本的广泛运用,以及各种计算机硬件的完善和升…

【阅读笔记】Android广播的处理流程

关于Android的解析,有很多优质内容,看了后记录一下阅读笔记,也是一种有意义的事情, 今天就看看“那个写代码的”这位大佬关于广播的梳理, https://blog.csdn.net/a572423926/category_11509429.html https://blog.c…

【C++boost::asio网络编程】有关异步读写api的笔记

异步读写api 异步写操作async_write_someasync_send 异步读操作async_read_someasync_receive 定义一个Session类&#xff0c;主要是为了服务端专门为客户端服务创建的管理类 class Session { public:Session(std::shared_ptr<asio::ip::tcp::socket> socket);void Conn…

Proteus8.17下载安装教程

Proteus是一款嵌入式系统仿真开发软件&#xff0c;实现了从原理图设计、单片机编程、系统仿真到PCB设计&#xff0c;真正实现了从概念到产品的完整设计&#xff0c;其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等&#xff0c;能够帮助用…

frp 内网穿透

文章目录 前言使用自己的服务器搭建frp 这里服务器是linux centos 7 宝塔&#xff0c;client是 windows10 https://github.com/fatedier/frp/releases/tag/v0.53.2 版本下载分客户端与服务端 一、frp是什么&#xff1f;二、使用步骤1.部署服务器端2.客户端 前言 使用自己的服务…

大数据-239 离线数仓 - 广告业务 测试 FlumeAgent 加载ODS、DWD层

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; Java篇开始了&#xff01; 目前开始更新 MyBatis&#xff0c;一起深入浅出&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff0…

基于 SpringBoot 开发在线家具商城:设计架构与实践流程

第3章 系统分析 用户的需求以及与本系统相似的在市场上存在的其它系统可以作为系统分析中参考的资料&#xff0c;分析人员可以根据这些信息确定出本系统具备的功能&#xff0c;分析出本系统具备的性能等内容。 3.1可行性分析 尽管系统是根据用户的要求进行制作&#xff0c;但是…

【Django-xadmin】

时间长不用,会忘的系列 1、Django-xadmin后台字段显示处理 主要是修改每个模块下adminx.py文件 代码解释&#xff1a;第1行控制表单字段显示第2行控制列表字段显示第3行控制搜索条件第4行控制过滤条件第5行支持单个或多个字段信息修改第6行列表分页&#xff0c;每页显示多少行…

【HM-React】02. React基础-下

React表单控制 受控绑定 概念&#xff1a;使用React组件的状态&#xff08;useState&#xff09;控制表单的状态 function App(){const [value, setValue] useState()return (<input type"text" value{value} onChange{e > setValue(e.target.value)}/>) …