【数据结构与算法】排序算法(上)——插入排序与选择排序

文章目录

  • 一、常见的排序算法
  • 二、插入排序
    • 2.1、直接插入排序
    • 2.2、希尔排序( 缩小增量排序 )
  • 三、选择排序
    • 3.1、直接选择排序
    • 3.2、堆排序
      • 3.2.1、堆排序的代码实现


一、常见的排序算法

在这里插入图片描述
常见排序算法中有四大排序算法,第一是插入排序,二是选择排序,三是交换排序,四是归并排序。本站文章针对前两个排序,这其中不才将拿出每个排序中所具有代表性的排序算法进行深入解读。


二、插入排序

基本思想:

把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。

实际中我们玩扑克牌时,就用了插入排序的思想
在这里插入图片描述

2.1、直接插入排序

直接插入排序是一种简单的插入排序法,其基本思想是:


把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。

当插入i(i>=1)个元素时,前面的array[0],array[1],,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],的排序码顺序进行比较找到插入位置即将array[i]插入,原来位置上的元素顺序后移
在这里插入图片描述
代码实现:

void InsertSort(int* arr, int n) {// 外层循环,从第二个元素开始,逐步处理每个元素for (int i = 0; i < n - 1; i++) {// tmp 是当前元素的索引,初始值是 i+1,表示从第二个元素开始int tmp = i + 1;// end 是已排序部分的最后一个索引,初始值是 iint end = i;// 把当前比较的数据保护起来int num = arr[tmp];// 内层循环,寻找当前元素插入的位置while (end >= 0) {// 如果已排序部分的元素大于当前元素if (arr[end] > num) {// 已经把当前元素比较保护好,可以将已排序部分的元素向右移动arr[tmp] = arr[end];// tmp 和 end 都向左移一位tmp--;end--;}else {// 找到合适的位置,不需要继续向左移动了break;}}// 将当前元素插入到合适的位置arr[tmp] = num;}
}

时间复杂度:

  • 最好的情况是:如果数组已经是有序的(或者几乎有序),只需要进行一轮比较,时间复杂度是O(n)。
  • 最坏的情况是:数组是逆序的每次都要比较所有已排序的元素,时间复杂度是O(n²)。

直接插入排序的特性总结:

  1. 元素集合越接近有序,直接插入排序算法的时间效率越高
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:稳定

2.2、希尔排序( 缩小增量排序 )

希尔排序法又称缩小增量法。希尔排序法的基本思想是:

先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时即为直接插入排序,所有记录在统一组内排好序。

希尔排序的工作原理:

  1. 初始间隔(gap:希尔排序的关键点在于选择一个合适的“间隔”序列,也叫做增量序列。初始时,希尔排序会使用一个较大的间隔,比如n/2,然后通过逐渐缩小间隔来进行多次排序

  2. 分组插入排序:每次排序时,希尔排序将待排序的序列按间隔分成多个子序列。然后对每个子序列分别进行插入排序。例如:间隔2时,序列的第一个元素、第三个元素、第五个元素、第七个元素、第九个元素形成一个子序列(如下图gap=2时)。然后对这个子序列进行插入排序。接着处理间隔更小的子序列,直到间隔为1时,整个序列就是有序的。

  3. 逐渐减小间隔:随着间隔的逐步减小,元素变得越来越接近排序完成,最后,当间隔为1时,希尔排序就变成了直接插入排序

在这里插入图片描述
总的来说,希尔排序就是直接排序PRO MAX版本使用希尔排序,它可以快速地把大数放在右边,小数放在左边。在快速区分大小数位置之后,就比原先的混乱顺序变得更有序,在直接插入排序中,我们知道元素集合越接近有序,直接插入排序算法的时间效率越高,我们就不断的往有序的方向靠近最后再直接在使用直接排序就可以缩短大部分时间。如下图,我们使用gap来表示每一次比较的跨越元素个数。

代码的实现:(两种循环的实现)

void shellSort(int* arr, int n) {int gap = n / 3 + 1;while (gap > 1) {// 判断收缩gap的值,直到gap值为1时,完成插入排序//int gap = 3;//for (int j = 0; j < gap; j++) {//end要分别对gap分出的gap个数组进行排序,这样便可完成数组中每个位置的比较//for (int i = 0; i < n - 1 - gap; i += gap) { // 把间距把分开的每个tmp位置都进行插入排序for (int end = 0; end < n  - gap; end++) { //这样设置循环可以把end在数组中的每个位置都走一边 与上面两层循环相比只是逻辑不同,效率上没有变化//int end = i + j;int tmp = arr[end + gap];while (end >= 0) { //把当前tmp插入到合适的位置if (arr[end] > tmp) {arr[end + gap] = arr[end];end -= gap;}else {break;}}arr[end + gap] = tmp;}//}//}gap = gap / 3 + 1;}
}
  • 排序代码的实现得有里到外的编写,这样容易把控
  • 首先编写一个正常的直接插入排序,并且把gap加上。
for (int i = 0; i < n - 1; i++) {int gap = 1;int tmp = i + gap;int end = i;int num = arr[i + gap];while (end >= 0){if (arr[end] > num) {arr[tmp] = arr[end];tmp--;end--;}else {break;}}arr[tmp] = num;
}
  • 这样我们就改好了直接插入排序有gap时的写法了
  • 我们开始修改gap每次跳转的范围,首先以gap=2为例,首先我们把i每次增加的个数都增加gap个。我们也优化变量
int gap = 2;
for (int i = 0; i < n - 1 - gap; i += gap) {int end = i;int tmp = arr[end + gap];while (end >= 0) { //把当前tmp插入到合适的位置if (arr[end] > tmp) {arr[end + gap] = arr[end];end -= gap;}else {break;}}arr[end + gap] = tmp;
}
  • 这个时候,我们就完成了一个子序列:第一个元素、第三个元素、第五个元素、第七个元素、第九个元素的元素排序。但是,我们gap = 2时,我们是把原数组分为两个子序列。所以要对两个子序列都进行排序。这样我们就必须在外面再套一层循环来把gap分开的子序列都进行排序。(如下图中被分开为红蓝两个子序列)在这里插入图片描述
int gap = 2;
for (int j = 0; j < gap; j++) {for (int i = 0; i < n - 1 - gap; i += gap) {int end = i + j;int tmp = arr[end + gap];while (end >= 0) { //把当前tmp插入到合适的位置if (arr[end] > tmp) {arr[end + gap] = arr[end];end -= gap;}else {break;}}arr[end + gap] = tmp;}
}
  • 子序列第一个节点起始点永远不会再第一个子序列的第二个节点的后面,所以我们可以通过套用外层循环j遍历的控制end的起始地址,则这样就可以完成多个子序列的访问。
    在这里插入图片描述
  • 这时候我们就可以完成所有子序列第一次排序。但是为了完成原数组的整体排序,我们必须要让gap每完成一个排序就减少,直到gap = 1时,变为直接插入排序完成数组的排序。
int gap = 2;
while (gap > 0) {for (int j = 0; j < gap; j++) {for (int i = 0; i < n - 1 - gap; i += gap) {int end = i + j;int tmp = arr[end + gap];while (end >= 0) { //把当前tmp插入到合适的位置if (arr[end] > tmp) {arr[end + gap] = arr[end];end -= gap;}else {break;}}arr[end + gap] = tmp;}}gap--;
}
  • 这样我们就完成了一个低效版本的希尔排序

为何说是低效版本呢?因为gap的值是固定的。当数据量达到数十亿的级别之后。我们一个区区的常量2的效率与直接插入排序的效率几户一样。

这时候就有大佬研究出目前位置希尔排序gap的最好取值之二(n是数组的元素个数):gap = n/2gap = n/3 + 1(最快)。我们再自己手搓希尔排序时,使用gap选择哪个都可以。不才选择gap = n/3 + 1作为示范。

int gap = n;
while (gap > 1) {gap = (gap / 3) + 1;for (int j = 0; j < gap; j++) {for (int i = 0; i < n - 1 - gap; i += gap) {int end = i + j;int tmp = arr[end + gap];while (end >= 0) { //把当前tmp插入到合适的位置if (arr[end] > tmp) {arr[end + gap] = arr[end];end -= gap;}else {break;}}arr[end + gap] = tmp;}}
}
  • 在使用gap = n/3 + 1之后,每次gap缩小值都是gap/3 + 1。无论是什么数循环到一定次数后最后除三的都会变为零。当除3等于0时再加一gap就等于1,这时候就是直接插入排序。当gap == 1时,就不会再进入循环。

但此时,上面循环中i、j就只是为了控制end变量起始位置可以遍历一遍数组,end每次都是与gap位后的数值进行比较。那么我们就可以把两层循环变为一层循环

void shellSort(int* arr, int n) {int gap = n;while (gap > 1) {// 再收缩gap的值,直到gap值为1时,完成插入排序gap = gap / 3 + 1;for (int end = 0; end < n  - gap; end++) { //这样设置循环可以把end在数组中的每个位置都走一边,但效率上没有变化int tmp = arr[end + gap];while (end >= 0) { //把当前tmp插入到合适的位置if (arr[end] > tmp) {arr[end + gap] = arr[end];//每次都与前gap值为比较end -= gap;}else {break;}}arr[end + gap] = tmp;}}
}

希尔排序的特性总结:

  1. 希尔排序是对直接插入排序的优化。
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就
    会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些书籍中给出的希尔排序的时间复杂度都不固定:

《数据结构-用面相对象方法与C++描述》— 殷人昆

在这里插入图片描述
不才上面使用的是Knuth提出的方式取值的,而且Knuth进行了大量的试验统计,暂时就按照:O(n1.25)到O(1.6*n1.25)来算,按照我们也可以粗略的归类与O(n * logn)的量级,但是真实的时间复杂度是比O (n * logn)大。


三、选择排序

基本思想:

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。

3.1、直接选择排序

  • 在元素集合array[i]--array[n-1]中选择关键码最大(小)的数据元素
  • 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
  • 在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素
    在这里插入图片描述

直接选择排序的特性总结:

  1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

3.2、堆排序

在堆的的逻辑结构中是严格遵循有序但这并不意味着整个堆的物理存储结构是有序的堆排序的目的对堆中的元素进行排序,通过堆这种数据结构的特性来实现元素的排序。

排序中分为升序和降序,堆排序即利用堆的思想来进行排序

  • 排升序对应着建大堆
  • 排降序对应着建小堆

堆排序的方法:

  • 因为堆排序的逻辑与堆的删除逻辑是完全一致的,都是先把堆顶元素与最后一个元素进行交换之后向下调整。与删除不同的是,删除需要把数组中最后一个元素完全删除,排序只需要不再理会数组最后一个元素,不用真正删除元素。

排升序建大堆的原因把堆顶元素与最后一个元素进行交换之后,堆中的中最大的值被放置在物理结构的最右边,如此循环即可完成结构的升序。降序同理
在这里插入图片描述

把堆中元素进行升序排序

我们使用上述大堆的例子创建有序的物理结构物理结构:[95,70,8,21,5,3,4,6,9,1]
在这里插入图片描述
首先交换堆顶与最后一个元素(如下图)
在这里插入图片描述
在交换完成后逻辑结构上不再把95结点当作堆的结点,之后进行向下调整(如下图)
在这里插入图片描述
此时,物理结构为:[70,21,8,9,5,3,4,6,1,95]。这样就把最大值放置在物理结构最右边,并且忽略最后一个结点后,其他结点依旧保持着大堆结构。(与删除堆顶逻辑完全相同)

循环上述操作可得下图:
在这里插入图片描述
一定次数的循环后,会得到下图
在这里插入图片描述
观察上图可以看到此时物理结构:[8,6,3,1,5,4,9,21,70,95],只要循环次数足够,就可以把物理结构排为升序

最终可得下图:
在这里插入图片描述
此时我们就完成了:堆中元素的升序排序。物理结构为:[1,3,4,5,6,8,9,21,70,95]

3.2.1、堆排序的代码实现

void HeapSort(HPDataType* arr, int capacity, int farent) {assert(arr); // 确保传入的数组指针不为空int cp = capacity; // 存储堆的初始容量// 当堆中还有元素时进行排序while (cp != 0) {// 将堆顶元素(最大或最小元素)与当前堆的最后一个元素交换HeapSwap(arr, 0, cp - 1); // 减少堆的有效大小(去除已排序的最大元素)--cp;// 调整堆结构,确保堆的性质依然保持AdjustDown(arr, cp, farent);}
}
  • 首先把堆顶元素与最后一个叶子节点的元素进行交换。
  • 之后--元素个数,把已经交换完成的最大值(最小值)忽略。
  • 完成后再向下调整。把交换完成后的顺序表,重新调整为大堆(小堆)。

堆排序的特性总结:

  1. 堆排序使用堆来选数,效率就高了很多。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

ps:剩下的两大排序真正紧张制作中,欲知后事如何,请听下回分解~~

以上就是本章所有内容。若有勘误请私信不才。万分感激💖💖 如果对大家有帮助的话,就请多多为我点赞收藏吧~~~💖💖
请添加图片描述

ps:表情包来自网络,侵删🌹

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/62672.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Educator头歌:离散数学 - 图论

第1关&#xff1a;图的概念 任务描述 本关任务&#xff1a;学习图的基本概念&#xff0c;完成相关练习。 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a;图的概念。 图的概念 1.一个图G是一个有序三元组G<V,R,ϕ>&#xff0c;其中V是非空顶点集合&am…

oracle RAC各版本集群总结和常用命令汇总

oracle RAC学习 RAC介绍 RAC&#xff1a;高可用集群&#xff0c;负载均衡集群&#xff0c;高性能计算集群 RAC是⼀种⾼可⽤&#xff0c;⾼性能&#xff0c;负载均衡的share-everything的集群 8i:内存融合雏形 内存融合雏形&#xff08;Oracle Parallel Server&#xff09;…

数据资产管理是什么?为什么重要?核心组成部分(分类分级、登记追踪、质量管理、安全合规)、实施方法、未来趋势、战略意义

文章目录 一、引言&#xff1a;数据的新时代二、什么是数据资产管理&#xff1f;2.1 定义2.2 核心功能 三、为什么数据资产管理至关重要&#xff1f;3.1 面对的数据管理挑战 四、数据资产管理的核心组成部分4.1 数据分类与分级4.2 数据资产登记与追踪4.3 数据质量管理4.4 数据安…

C++高阶算法[汇总]

&#xff08;一&#xff09;高精度算法概述 高精度算法是指能够处理超出常规数据类型表示范围的数值的算法。在 C 中&#xff0c;标准数据类型通常有固定的位数和精度限制&#xff0c;而高精度算法可以解决大数运算、金融计算和科学计算等领域的问题。 &#xff08;二&#x…

springboot365高校疫情防控web系统(论文+源码)_kaic

毕 业 设 计&#xff08;论 文&#xff09; 题目&#xff1a;高校疫情防控的设计与实现 摘 要 互联网发展至今&#xff0c;无论是其理论还是技术都已经成熟&#xff0c;而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播&#xff0c;搭配信息管理工具可以很好地为…

Electron实现打开子窗口加载vue路由指定的组件页面白屏

白屏有两种情况&#xff1a; Vue项目使用的history路由的话就会显示空白&#xff0c;加载不出来路由&#xff0c;也不能跳转路由 这种情况看我上一篇文章Electron vue3 打包之后不能跳转路由-CSDN博客 Electron中已经能正常加载页面跳转路由&#xff0c;但是创建子窗口加载子页…

智能探针技术:实现可视、可知、可诊的主动网络运维策略

网络维护的重要性 网络运维是确保网络系统稳定、高效、安全运行的关键活动。在当今这个高度依赖信息技术的时代&#xff0c;网络运维的重要性不仅体现在技术层面&#xff0c;更关乎到企业运营的方方面面。网络运维具有保障网络的稳定性、提升网络运维性能、降低企业运营成本等…

泷羽sec-shell脚本(全) 学习笔记

声明&#xff01; 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团队无关&a…

鸿蒙学习使用模拟器运行应用(开发篇)

文章目录 1、系统类型和运行环境要求2、创建模拟器3、启动和关闭模拟器4、安装应用程序包和上传文件QA:在Windows电脑上启动模拟器&#xff0c;提示未开启Hyper-V 1、系统类型和运行环境要求 Windows 10 企业版、专业版或教育版及以上&#xff0c;且操作系统版本不低于10.0.18…

MySQL 利用JSON特性完成复杂数据存储和查询

情景描述 下面一个应用场景&#xff0c;是数据库需要存储文库类的信息。文库分多个种类&#xff0c;比如图书类、论文类等多个类别&#xff0c;每个类别有不同的字段信息。 常规处理方法 要在单张表中去存储不同种类的文库数据&#xff0c;表就会变成这样的结构&#xff1a; …

【数据结构】哈希 ---万字详解

unordered系列关联式容器 在C98中&#xff0c;STL提供了底层为红黑树结构的一系列关联式容器&#xff0c;在查询时效率可达到log_2 N&#xff0c;即最差情况下需要比较红黑树的高度次&#xff0c;当树中的节点非常多时&#xff0c;查询效率也不理想。最好 的查询是&#xff0c…

【Redis篇】Hash的认识以及相关命令操作

目录 前言 基本命令 HSET HGET HEXISTS HDEL HKEYS HVALS HGETALL HMGET HLEN HSETNX HINCRBY HINCRBYFLOAT 内部编码 高内聚&#xff0c;低耦合 前言 可以看出&#xff1a; Redis 的 Hash 是一个键&#xff08;key&#xff09;下包含多个字段&#xff08;field…

可解释机器学习 | Python实现LGBM-SHAP可解释机器学习

机器学习 | Python实现GBDT梯度提升树模型设计 目录 机器学习 | Python实现GBDT梯度提升树模型设计基本介绍模型使用参考资料基本介绍 LightGBM(Light Gradient Boosting Machine)是一种基于决策树的梯度提升框架,是一种高效的机器学习模型。SHAP(SHapley Additive exPlan…

mysql--二进制安装编译安装yum安装

二进制安装 创建用户和组 [rootlocalhost ~]# groupadd -r -g 306 mysql [rootlocalhost ~]# useradd -r -g 306 -u 306 -d /data/mysql mysql 创建文件夹并添加所属文件用户和组 [rootlocalhost ~]# mkdir -p /data/mysql [rootlocalhost ~]# chown mysql:mysql /data/mysql …

大模型开发和微调工具Llama-Factory-->WebUI

WebUI LLaMA-Factory 支持通过 WebUI 零代码微调大模型。 通过如下指令进入 WebUI llamafactory-cli webui# 如果是国内&#xff0c; # USE_MODELSCOPE_HUB 设为 1&#xff0c;表示模型从 ModelScope 魔搭社区下载。 # 避免从 HuggingFace 下载模型导致网速不畅 USE_MODELSC…

【WPS】【EXCEL】将单元格中字符按照分隔符拆分按行填充到其他单元格

问题&#xff1a;实现如下图的效果 解答&#xff1a; 一、函数 IFERROR(TRIM(MID(SUBSTITUTE($A$2,",",REPT(" ",LEN($A$2))),(ROW(A1)-1)*LEN($A$2)1,LEN($A$2))),"") 二、在单元格C2中填写如下函数 三、全选要填充的单元格并且按CTRLD 函数…

Java有关数组的相关问题

Java中的栈和堆的含义 栈 存储局部变量&#xff1a;栈主要用于存储方法中的局部变量&#xff0c;包括基本数据类型&#xff08;int、double、boolean等&#xff09;和对象的引用&#xff08;不包含对象本身&#xff09;。 遵循后进先出原则&#xff1a;当一个方法被调用时&…

提升阅读体验,Balabolka让文字跃然“声”上

作为一个专业的语音合成工具&#xff0c;Balabolka为用户提供了全方位的文本朗读解决方案。这款软件不仅可以将各类文本实时转换为清晰的语音输出&#xff0c;还能将转换后的音频内容导出为多种主流格式。它强大的兼容性使其能够处理各类电子书和文档格式&#xff0c;让用户可以…

解决`-bash: ./configure:/bin/sh^M:解释器错误: 没有那个文件或目录`的问题

解决`-bash: ./configure:/bin/sh^M:解释器错误: 没有那个文件或目录`的问题 一、错误原因分析二、解决方法方法一:使用`dos2unix`工具方法二:使用`sed`命令方法三:使用`tr`命令方法四:在文本编辑器中转换方法五:在Windows系统中使用适当的工具三、预防措施四、总结在使…

Flink双流Join

在离线 Hive 中&#xff0c;我们经常会使用 Join 进行多表关联。那么在实时中我们应该如何实现两条流的 Join 呢&#xff1f;Flink DataStream API 为我们提供了3个算子来实现双流 join&#xff0c;分别是&#xff1a; join coGroup intervalJoin 下面我们分别详细看一下这…