sklearn中常用数据集简介

scikit-learn库中提供了包括分类、回归、聚类、降维等多种机器学习任务所需的常用数据集,方便进行实验和研究,它们主要被封装在sklearn.datasets中,本文对其中一些常用的数据集进行简单的介绍。

1.Iris(鸢尾花)数据集

该数据集包含150个鸢尾花样本,分为3个品种,每个品种50个样本。每个样本包含4个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。目的是使用这4个特征来对鸢尾花进行分类。scikit-learn中该数据集主要封装在sklearn.datasets.load_iris()中,使用方法如下:

from sklearn.datasets import load_iris# 加载数据集
iris = load_iris()# 打印数据集的描述
print(iris.DESCR)# 打印特征名
print(iris.feature_names)# 打印标签类别
print(iris.target_names)# 获取特征矩阵和目标向量
X = iris.data
y = iris.target

在上面的代码中,load_iris() 方法返回一个包含Iris数据集的对象 iris 。可以通过 iris.DESCR、iris.feature_names、iris.target_names 属性打印出数据集的描述、特征名、标签类别。然后,我们可以使用 iris.data 属性获取特征矩阵,使用 iris.target 属性获取标签向量。特征矩阵 X 是一个包含150个样本和4个特征的二维数组,目标向量 y 是一个包含150个元素的一维数组,每个元素表示对应样本的类别。

2.Wine(葡萄酒)数据集

Wine数据集也是一个分类问题的数据集,包含了三个葡萄酒品种(class)的13种化学特征,一共有178个样本。这个数据集是由美国加州大学欧文分校(UCI)提供的,最初是为了研究酒的化学成分和葡萄酒品种之间的关系而构建的。

Wine数据集中的三个葡萄酒品种分别是:

  • Class 1: 59个样本

  • Class 2: 71个样本

  • Class 3: 48个样本

13个化学特征分别是:

  • Alcohol(酒精)

  • Malic acid(苹果酸)

  • Ash(灰分)

  • Alcalinity of ash(灰的碱度)

  • Magnesium(镁)

  • Total phenols(总酚类化合物)

  • Flavanoids(类黄酮)

  • Nonflavanoid phenols(非类黄酮酚)

  • Proanthocyanins(原花青素)

  • Color intensity(颜色强度)

  • Hue(色调)

  • OD280/OD315 of diluted wines(稀释葡萄酒的OD280/OD315比值)

  • Proline(脯氨酸)

Wine数据集使用方法和鸢尾花数据集是类似的:

from sklearn.datasets import load_winewine = load_wine()
X, y = wine.data, wine.target

其中,X代表数据集中的13个特征,y代表数据集中的三个葡萄酒品种(class)。

3.Boston(波士顿房价)数据集

Boston数据集则是一个回归问题的经典数据集,包含了美国波士顿地区房屋的14个特征,一共有506个样本。这个数据集同样是由美国加州大学欧文分校(UCI)提供的,我们通常用来研究房屋价格和房屋特征之间的关系。

Boston数据集中的14个特征分别是:

  • CRIM:城镇人均犯罪率

  • ZN:占地面积超过25000平方英尺的住宅用地比例

  • INDUS:城镇非零售业务占地面积的比例

  • CHAS:查尔斯河虚拟变量(如果河流边界,则为1;否则为0)

  • NOX:一氧化氮浓度(每千万分之一)

  • RM:住宅平均房间数

  • AGE:1940年之前建造的自用房屋的比例

  • DIS:到波士顿五个就业中心的加权距离

  • RAD:放射性公路的可达性指数

  • TAX:每10,000美元的全值财产税率

  • PTRATIO:城镇师生比例

  • B:1000(Bk - 0.63)^ 2其中Bk是城镇黑人的比例

  • LSTAT:人口中地位低下者的百分比

  • MEDV:自住房屋房价中位数,以千美元计

该数据集使用方法如下:

from sklearn.datasets import load_bostonboston = load_boston()
X, y = boston.data, boston.target

其中,X代表数据集中的14个特征,y代表数据集中的自住房屋房价中位数的目标变量。

4.digits(手写数字)数据集

Digits数据集是一个手写数字识别数据集,它包含了1797张8x8像素的数字图像。每张图像都被转换为64维的特征向量,每个特征表示图像中的一个像素点。每张图像都被标记为0到9中的一个数字,表示图像所代表的数字。这个数据集非常适合用于机器学习中的图像分类问题。

在sklearn中,Digits数据集可以通过以下代码进行加载:

from sklearn.datasets import load_digitsdigits = load_digits()

按上述步骤执行完之后,digits对象同样包含两个主要属性:data和target。digits.data保存的是特征矩阵,它是一个1797x64的数组,每一行代表一张图像的特征向量。标签保存在digits.target中,它是一个长度为1797的一维数组,每个元素代表相应图像的数字标签。我们使用类似的方法可以导出特征和标签:

X, y = boston.data, boston.target

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/62001.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【AIGC】如何准确引导ChatGPT,实现精细化GPTs指令生成

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AIGC | 提示词Prompt应用实例 文章目录 💯前言💯准确引导ChatGPT创建爆款小红书文案GPTs指令案例💯 高效开发GPTs应用的核心原则明确应用场景和目标受众构建多样化风格模板提问与引…

json格式数据集转换成yolo的txt格式数据集

这个代码是参考了两个博客 我是感觉第一篇博客可能有问题,然后自己做了改进,如果我是错误的或者正确的,请各位评论区说一下,感谢 Json格式的数据集标签转化为有效的txt格式(data_coco)_train.json-CSDN博客 COCO(.j…

Ajax学习笔记,第一节:语法基础

Ajax学习笔记,第一节:语法基础 一、概念 1、什么是Ajax 使用浏览器的 XMLHttpRequest 对象 与服务器通信2、什么是axios Axios是一个基于Promise的JavaScript库,支持在浏览器和Node.js环境中使用。相较于Ajax,Axios提供了更多…

【ONE·基础算法 || 动态规划(二)】

总言 主要内容:编程题举例,熟悉理解动态规划类题型(子数组、子序列问题)。                文章目录 总言5、子数组问题(数组中连续的一段)5.1、最大子数组和(medium)5.1.…

数据库相关学习杂记-事务

ARIES(基于语义的恢复与隔离算法)是现代数据库理论的基础。提供了解决ACID中A、I、D重要的解决思路。 基础知识 这里先复习一下关于ACID的含义以及数据库隔离级别: ACID的含义 原子性(Atomicity): 一个事务中被视为…

2024 java大厂面试复习总结(一)(持续更新)

10年java程序员,2024年正好35岁,2024年11月公司裁员,记录自己找工作时候复习的一些要点。 java基础 hashCode()与equals()的相关规定 如果两个对象相等,则hashcode一定也是相同的两个对象相等,对两个对象分别调用eq…

Python绘制太极八卦

文章目录 系列目录写在前面技术需求1. 图形绘制库的支持2. 图形绘制功能3. 参数化设计4. 绘制控制5. 数据处理6. 用户界面 完整代码代码分析1. rset() 函数2. offset() 函数3. taiji() 函数4. bagua() 函数5. 绘制过程6. 技术亮点 写在后面 系列目录 序号直达链接爱心系列1Pyth…

mfc100u.dll是什么?分享几种mfc100u.dll丢失的解决方法

mfc100u.dll 是一个动态链接库(DLL)文件,属于 Microsoft Foundation Classes (MFC) 库的一部分。MFC 是微软公司开发的一套用于快速开发 Windows 应用程序的 C 类库。mfc100u.dll 文件包含了 MFC 库中一些常用的函数和类的定义,这…

【JavaEE】Servlet:表白墙

文章目录 一、前端二、前置知识三、代码1、后端2、前端3、总结 四、存入数据库1、引入 mysql 的依赖&#xff0c;mysql 驱动包2、创建数据库数据表3、调整上述后端代码3.1 封装数据库操作&#xff0c;和数据库建立连接3.2 调整后端代码 一、前端 <!DOCTYPE html> <ht…

WebRTC音视频同步原理与实现详解(上)

第一章、RTP时间戳与NTP时间戳 1.1 RTP时间戳 时间戳&#xff0c;用来定义媒体负载数据的采样时刻&#xff0c;从单调线性递增的时钟中获取&#xff0c;时钟的精度由 RTP 负载数据的采样频率决定。 音频和视频的采样频率是不一样的&#xff0c;一般音频的采样频率有 8KHz、…

蓝桥杯每日真题 - 第21天

题目&#xff1a;(空间) 题目描述&#xff08;12届 C&C B组A题&#xff09; 解题思路&#xff1a; 转换单位&#xff1a; 内存总大小为 256MB&#xff0c;换算为字节&#xff1a; 25610241024268,435,456字节 计算每个整数占用空间&#xff1a; 每个 32 位整数占用…

利用Python爬虫获得1688按关键字搜索商品:技术解析

在电商领域&#xff0c;1688作为中国领先的B2B电商平台&#xff0c;其商品搜索功能对于商家来说具有极高的价值。通过获取搜索结果&#xff0c;商家可以更好地了解市场趋势&#xff0c;优化产品标题&#xff0c;提高搜索排名。本文将介绍如何使用Python编写爬虫&#xff0c;以获…

三、计算机视觉_05MTCNN人脸检测

0、人脸识别流程概述 人脸识别流程包括两个主要步骤&#xff1a; Step1&#xff1a;人脸检测&#xff0c;确保我们处理的是正确的人脸区域 Step2&#xff1a;身份识别&#xff0c;确定该人脸的身份 0.1 人脸检测 人脸检测是从图像中定位人脸并抠出人脸区域的过程&#xff…

「Chromeg谷歌浏览器/Edge浏览器」篡改猴Tempermongkey插件的安装与使用

1. 谷歌浏览器安装及使用流程 1.1 准备篡改猴扩展程序包。 因为谷歌浏览器的扩展商城打不开&#xff0c;所以需要准备一个篡改猴压缩包。 其他浏览器只需打开扩展商城搜索篡改猴即可。 没有压缩包的可以进我主页下载。 也可直接点击下载&#xff1a;Chrome浏览器篡改猴(油猴…

STM32F103C8T6实时时钟RTC

目录 前言 一、RTC基本硬件结构 二、Unix时间戳 2.1 unix时间戳定义 2.2 时间戳与日历日期时间的转换 2.3 指针函数使用注意事项 ​三、RTC和BKP硬件结构 四、驱动代码解析 前言 STM32F103C8T6外部低速时钟LSE&#xff08;一般为32.768KHz&#xff09;用的引脚是PC14和PC…

【JavaEE初阶】多线程初阶下部

文章目录 前言一、volatile关键字volatile 能保证内存可见性 二、wait 和 notify2.1 wait()方法2.2 notify()方法2.3 notifyAll()方法2.4 wait 和 sleep 的对比&#xff08;面试题&#xff09; 三、多线程案例单例模式 四、总结-保证线程安全的思路五、对比线程和进程总结 前言…

【人工智能】Python在机器学习与人工智能中的应用

Python因其简洁易用、丰富的库支持以及强大的社区&#xff0c;被广泛应用于机器学习与人工智能&#xff08;AI&#xff09;领域。本教程通过实用的代码示例和讲解&#xff0c;带你从零开始掌握Python在机器学习与人工智能中的基本用法。 1. 机器学习与AI的Python生态系统 Pyth…

“iOS profile文件与私钥证书文件不匹配”总结打ipa包出现的问题

目录 文件和证书未加载或特殊字符问题 证书过期或Profile文件错误 确认开发者证书和私钥是否匹配 创建证书选择错误问题 申请苹果 AppId时勾选服务不全问题 ​总结 在上线ios平台的时候&#xff0c;在Hbuilder中打包遇见了问题&#xff0c;生成ipa文件时候&#xff0c;一…

element-ui 中el-calendar 日历插件获取显示的第一天和最后一天【原创】

需要获取el-calendar 日历组件上的第1天和最后一天。可以通过document.querySelector()方法进行获取dom元素中的值&#xff0c;这样避免计算问题。 获取的过程中主要有两个难点&#xff0c;第1个是处理上1月和下1月的数据&#xff0c;第2个是跨年的数据。 直接贴代码&#xff…

JavaScript的基础数据类型

一、JavaScript中的数组 定义 数组是一种特殊的对象&#xff0c;用于存储多个值。在JavaScript中&#xff0c;数组可以包含不同的数据类型&#xff0c;如数字、字符串、对象、甚至其他数组。数组的创建有两种常见方式&#xff1a; 字面量表示法&#xff1a;let fruits [apple…