GPT1.0 和 GPT2.0 的联系与区别

随着自然语言处理技术的飞速发展,OpenAI 提出的 GPT 系列模型成为了生成式预训练模型的代表。作为 GPT 系列的两代代表,GPT-1 和 GPT-2 虽然在架构上有着继承关系,但在设计理念和性能上有显著的改进。本文将从模型架构、参数规模、训练数据和实际能力等方面分析 GPT-1 和 GPT-2 的联系与区别。


一、GPT-1 和 GPT-2 的基本联系

  1. 相同的核心架构:基于 Transformer 的解码器结构
    • GPT-1 和 GPT-2 都采用了 Transformer 架构中的解码器部分,取消了编码器部分。这种设计使得模型专注于自回归任务,即通过给定前文预测下一个词。
    • 两者均使用多头自注意力机制和前馈网络相结合的模块堆叠。
  2. 语言建模目标一致
    • 两代模型的训练目标都是无监督语言建模(Unsupervised Language Modeling),以最大化给定文本序列的似然概率为优化目标。
    • 使用左到右的单向生成方式,从序列的开头逐词预测,适用于语言生成任务。
  3. 位置嵌入(Positional Embedding)
    • 两代模型均使用了位置嵌入,将词汇嵌入(Token Embedding)与位置嵌入相加后作为 Transformer 的输入。
  4. 残差连接与 LayerNorm
    • 残差连接(Residual Connection)和层归一化(Layer Normalization)被广泛用于提升梯度流动和训练稳定性。

二、GPT-1 和 GPT-2 的主要区别

1. 模型规模

GPT-2 的显著改进在于模型规模的扩展:

  • GPT-1:只有一个版本,参数规模为 1.1 亿(110M),包含 12 层 Transformer 解码器,每层的隐藏状态维度为 768。
  • GPT-2:提供了多个版本,最大参数规模达到 15 亿(1.5B),包含 48 层 Transformer 解码器,每层的隐藏状态维度为 1600,注意力头数从 12 增加到 16。
2. 上下文窗口长度
  • GPT-1 的最大上下文长度为 512
  • GPT-2 扩展到了 1024,使得模型可以捕获更长的上下文依赖关系,提升了生成的连贯性和逻辑性。
3. 训练数据集
  • GPT-1:训练数据规模较小,主要来自书籍数据集(BooksCorpus)等,包含约 5GB 的文本。
  • GPT-2:大幅扩展训练数据,使用了一个名为 WebText 的数据集,包含约 40GB 的高质量互联网文本。WebText 通过过滤低质量内容(如广告和代码)优化了数据质量。
  • 这种数据规模和多样性的提升,让 GPT-2 的泛化能力远超 GPT-1。
4. LayerNorm 的位置
  • GPT-1 使用了前置 LayerNorm(Pre-Norm),即将 LayerNorm 放在子模块的输入部分。
  • GPT-2 改为后置 LayerNorm(Post-Norm),即将 LayerNorm 放在子模块的输出部分。后置 LayerNorm 改善了梯度流动问题,提升了模型的训练稳定性。
5. 语言生成能力
  • GPT-2 在语言生成的连贯性、上下文一致性和逻辑性方面大幅超越 GPT-1,尤其是在长文本生成时表现尤为突出。
  • GPT-2 具备更强的多任务能力,即使没有专门的微调,也能解决翻译、问答等多种任务(零样本和少样本学习)。
6. 训练优化
  • GPT-2 引入了更高效的优化技术,比如改进了学习率调度策略(线性学习率热身和余弦衰减)、更少的 Dropout 使用等。

三、GPT-1 和 GPT-2 的实际意义

1. GPT-1:验证 GPT 架构的有效性
  • GPT-1 是生成式预训练模型(Generative Pre-trained Transformer)的首次实践,验证了基于无监督预训练的 Transformer 架构在自然语言处理任务中的潜力。
  • 其提出了“预训练 + 微调”的通用框架,为后续模型的快速发展奠定了基础。
2. GPT-2:大规模模型的潜力
  • GPT-2 的成功揭示了“更大模型 + 更多数据”在提升自然语言处理能力上的重要性。
  • 它的强大能力表明,模型规模的扩大与数据质量的提升可以显著提高模型在语言生成和多任务学习中的表现。
3. 技术传播与影响
  • GPT-1 的问世将注意力吸引到生成式语言模型领域,而 GPT-2 的发布则推动了行业对大规模预训练模型的关注,直接影响了后续 GPT-3、ChatGPT 等更强大的模型发展。

四、总结

GPT-1 和 GPT-2 作为两代生成式预训练模型,既有紧密的联系,也展现出明显的区别:

特性GPT-1GPT-2
参数规模1.1 亿15 亿
Transformer 层数12 层48 层(大模型)
隐藏层维度7681600
上下文长度5121024
训练数据集5GB40GB
LayerNorm 位置前置后置
生成质量一般优秀

GPT-1 提供了理论框架,GPT-2 则通过更大的规模、更优的数据和更精细的优化将这种架构的潜力发挥到了极致。两者的进化过程体现了深度学习领域中“大规模预训练模型”的发展思路,也为后续 GPT 系列的发展铺平了道路。


五、参考代码(不完整,仅供理解)

import torch
import torch.nn as nn
import torch.optim as optimclass GPT1Layer(nn.Module):"""GPT-1 的 Transformer 子模块,使用前置 LayerNorm"""def __init__(self, embed_size, num_heads):super(GPT1Layer, self).__init__()self.ln = nn.LayerNorm(embed_size)self.attn = nn.MultiheadAttention(embed_size, num_heads)self.ffn = nn.Sequential(nn.Linear(embed_size, 4 * embed_size),nn.GELU(),nn.Linear(4 * embed_size, embed_size))def forward(self, x):# 前置 LayerNorm + 注意力x_norm = self.ln(x)attn_out, _ = self.attn(x_norm, x_norm, x_norm)x = x + attn_out  # 残差连接# 前置 LayerNorm + 前馈网络x_norm = self.ln(x)ffn_out = self.ffn(x_norm)x = x + ffn_out  # 残差连接return xclass GPT2Layer(nn.Module):"""GPT-2 的 Transformer 子模块,使用后置 LayerNorm"""def __init__(self, embed_size, num_heads):super(GPT2Layer, self).__init__()self.attn = nn.MultiheadAttention(embed_size, num_heads)self.ln1 = nn.LayerNorm(embed_size)self.ffn = nn.Sequential(nn.Linear(embed_size, 4 * embed_size),nn.GELU(),nn.Linear(4 * embed_size, embed_size))self.ln2 = nn.LayerNorm(embed_size)def forward(self, x):# 注意力 + 残差连接 + 后置 LayerNormattn_out, _ = self.attn(x, x, x)x = x + attn_outx = self.ln1(x)# 前馈网络 + 残差连接 + 后置 LayerNormffn_out = self.ffn(x)x = x + ffn_outx = self.ln2(x)return xclass GPT(nn.Module):"""通用 GPT 模型,允许指定 LayerNorm 逻辑"""def __init__(self, vocab_size, embed_size, num_heads, num_layers, max_len, layer_cls):super(GPT, self).__init__()self.embed = nn.Embedding(vocab_size, embed_size)self.pos_embed = nn.Embedding(max_len, embed_size)self.layers = nn.ModuleList([layer_cls(embed_size, num_heads) for _ in range(num_layers)])self.ln_f = nn.LayerNorm(embed_size)  # 用于 GPT-2 的全局 LayerNormself.fc = nn.Linear(embed_size, vocab_size)def forward(self, x):seq_len = x.size(1)pos = torch.arange(seq_len, device=x.device).unsqueeze(0)x = self.embed(x) + self.pos_embed(pos)for layer in self.layers:x = layer(x)x = self.ln_f(x)  # GPT-2 的全局 LayerNorm,GPT-1 可视情况移除return self.fc(x)# Hyperparameters for GPT-1 and GPT-2
gpt1_config = {'vocab_size': 30522,'embed_size': 768,'num_heads': 12,'num_layers': 12,'max_len': 512,'layer_cls': GPT1Layer
}gpt2_config = {'vocab_size': 50257,'embed_size': 1600,'num_heads': 25,'num_layers': 48,'max_len': 1024,'layer_cls': GPT2Layer
}# Initialize models
gpt1 = GPT(**gpt1_config)
gpt2 = GPT(**gpt2_config)# Loss function and optimizers
criterion = nn.CrossEntropyLoss()
optimizer1 = optim.Adam(gpt1.parameters(), lr=0.001)
optimizer2 = optim.Adam(gpt2.parameters(), lr=0.001)# Example input (batch_size, seq_len)
batch_size1, batch_size2 = 2, 2
input_ids1 = torch.randint(0, gpt1_config['vocab_size'], (batch_size1, gpt1_config['max_len']))
input_ids2 = torch.randint(0, gpt2_config['vocab_size'], (batch_size2, gpt2_config['max_len']))# Forward pass
outputs1 = gpt1(input_ids1)  # Output for GPT-1
outputs2 = gpt2(input_ids2)  # Output for GPT-2print(f"GPT-1 Output Shape: {outputs1.shape}")  # (batch_size, seq_len, vocab_size)
print(f"GPT-2 Output Shape: {outputs2.shape}")  # (batch_size, seq_len, vocab_size)def count_parameters(model):return sum(p.numel() for p in model.parameters() if p.requires_grad)def format_parameters(num_params):if num_params >= 1e9:return f"{num_params / 1e9:.2f}B"  # 转换为十亿单位并保留两位小数elif num_params >= 1e6:return f"{num_params / 1e6:.2f}M"  # 转换为百万单位并保留两位小数else:return f"{num_params}"# 计算并格式化参数数量
gpt1_params = count_parameters(gpt1)
gpt2_params = count_parameters(gpt2)print(f"GPT-1 Model Parameters: {format_parameters(gpt1_params)}")
print(f"GPT-2 Model Parameters: {format_parameters(gpt2_params)}")

在这里插入图片描述


参考

  • Improving Language Understanding by Generative Pre-Training (GPT-1)
  • Language Models are Unsupervised Multitask Learners (GPT-2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/61479.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java-06 深入浅出 MyBatis - 一对一模型 SqlMapConfig 与 Mapper 详细讲解测试

点一下关注吧!!!非常感谢!!持续更新!!! 大数据篇正在更新!https://blog.csdn.net/w776341482/category_12713819.html 目前已经更新到了: MyBatis&#xff…

css使用弹性盒,让每个子元素平均等分父元素的4/1大小

css使用弹性盒,让每个子元素平均等分父元素的4/1大小 原本: ul {padding: 0;width: 100%;background-color: rgb(74, 80, 62);display: flex;justify-content: space-between;flex-wrap: wrap;li {/* 每个占4/1 */overflow: hidden;background-color: r…

佛山三水戴尔R740服务器黄灯故障处理

1:佛山三水某某大型商场用户反馈一台DELL PowerEdge R740服务器近期出现了黄灯警告故障,需要冠峰工程师协助检查故障灯原因。 2:工程师协助该用户通过笔记本网线直连到服务器尾部的IDRAC管理端口,默认ip 192.168.0.120 密码一般在…

[ 应急响应进阶篇-1 ] Windows 创建后门并进行应急处置(后门账户\计划任务后门\服务后门\启动项后门\粘贴键后门)

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…

力扣 LeetCode 513. 找树左下角的值(Day8:二叉树)

解题思路: 方法一:递归法(方法二更好理解,个人更习惯方法二) 前中后序均可,实际上没有中的处理 中左右,左中右,左右中,实际上都是左在前,所以遇到的第一个…

基于web的教务系统的实现(springboot框架 mysql jpa freemarker)

💗博主介绍💗:✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计✌ 温馨提示:文末有 CSDN 平台官方提供的老师 Wechat / QQ 名片 :) Java精品实战案例《700套》 2025最新毕业设计选题推荐…

vue学习11.21

vue特点: 采用组件化开发,提高代码复用率和维护 声明式编码,不需要直接操作DOM元素 使用diff算法,把虚拟DOM变成真实DOM, 如果两个容器都用vue的实例,只选最上面的容器。 一个容器使用两个vue实例也不行…

【数据分享】中国汽车工业年鉴(1986-2023)

本年鉴是由工业和信息化部指导,中国汽车技术研究中心有限公司与中国汽车工业协会联合主办。《年鉴》是全面、客观记载中国汽车工业发展与改革历程的重要文献,内容涵盖汽车产业政策、标准、企业、市场以及全国各省市汽车工业发展情况,并调查汇…

Java项目实战II基于微信小程序的南宁周边乡村游平台(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者,专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 随着城市化…

深入理解Redis(七)----Redis实现分布式锁

基于Redis的实现方式 1、选用Redis实现分布式锁原因: (1)Redis有很高的性能; (2)Redis命令对此支持较好,实现起来比较方便 2、使用命令介绍: (1)SETNX SETNX …

如何创建一个项目用于研究element-plus的原理

需求:直接使用element-plus未封装成组件的源码,创建一个项目,可以使用任意的element-plus组件,可以深度研究组件的运行。例如研究某一个效果,如果直接在node_modules修改elment-plus打包之后的那些js、mjs代码&#xf…

SQL进阶技巧:如何进行数字范围统计?| 货场剩余货位的统计查询方法

目录 0 场景描述 1 剩余空位区间和剩余空位编号统计分析 2 查找已用货位区间 3 小结 0 场景描述 这是在做一个大型货场租赁系统时遇到的问题,在计算货场剩余存储空间时,不仅仅需要知道哪些货位是空闲的,还要能够判断出哪些货位之间是连…

菜鸟驿站二维码/一维码 取件识别功能

特别注意需要引入 库文 ZXing 可跳转: 记录【WinForm】C#学习使用ZXing.Net生成条码过程_c# zxing-CSDN博客 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using static System.Net.…

2024年亚太地区数学建模大赛D题-探索量子加速人工智能的前沿领域

量子计算在解决复杂问题和处理大规模数据集方面具有巨大的潜力,远远超过了经典计算机的能力。当与人工智能(AI)集成时,量子计算可以带来革命性的突破。它的并行处理能力能够在更短的时间内解决更复杂的问题,这对优化和…

教程 - 在 Creo Elements/Pro 中使用 Mechanica 分析杆的 von-mises 应力?

这是教程。 步骤1: 在“零件”模式下启动 Creo Elements/Pro。 步骤2: 草绘>>顶平面并绘制一个直径为 20mm 的圆。 步骤3: 将其挤出 200 毫米。 步骤4: 应用>>机械. 步骤5: 单击“确定”&…

ssm框架-spring-spring声明式事务

声明式事务概念 声明式事务是指使用注解或 XML 配置的方式来控制事务的提交和回滚。 开发者只需要添加配置即可, 具体事务的实现由第三方框架实现,避免我们直接进行事务操作! 使用声明式事务可以将事务的控制和业务逻辑分离开来,提…

基于单片机的多功能跑步机控制系统

本设计基于单片机的一种多功能跑步机控制系统。该系统以STM32单片机为主控制器,由七个电路模块组成,分别是:单片机模块、电机控制模块、心率检测模块、音乐播放模块、液晶显示模块、语音控制模块、电源模块。其中,单片机模块是整个…

写给Vue2使用者的Vue3学习笔记

&#x1f64b;‍请注意&#xff0c;由于本人项目中引入了unplugin-auto-import的依赖&#xff0c;所以所有的代码示例中均未手动引入各种依赖库&#xff08;ref、reactive、useRouter等等&#xff09; 初始环境搭建 npm init vuelatest模板语法 插值 同 Vue2 <span>…

C# 数据结构之【图】C#图

1. 图的概念 图是一种重要的数据结构&#xff0c;用于表示节点&#xff08;顶点&#xff09;之间的关系。图由一组顶点和连接这些顶点的边组成。图可以是有向的&#xff08;边有方向&#xff09;或无向的&#xff08;边没有方向&#xff09;&#xff0c;可以是加权的&#xff…

短剧系统小程序开发产品设计实例解析

短剧系统小程序开发架构深度解析引言 随着数字娱乐市场的蓬勃发展&#xff0c;短剧因其紧凑的情节、创新的表现形式和便捷的观看体验&#xff0c;迅速吸引了大量观众的关注。作为承载短剧内容的重要平台&#xff0c;短剧系统小程序不仅需要在用户体验、内容管理等方面做到极致&…