使用 Python 和 OpenCV 实现摄像头人脸检测并截图

概述

在现代应用中,人脸检测是一项非常重要的技术,广泛应用于安全监控、身份验证等领域。本文将详细介绍如何使用 Python 和 OpenCV 库实现摄像头人脸检测并截图,并通过具体的代码示例来展示整个过程。

环境准备

在开始编写代码之前,确保已经安装了 OpenCV 库。可以使用以下命令安装:

pip install opencv-python
代码详解
# -*- coding: utf-8 -*-
# import 进openCV的库
import cv2
import os
import time# 调用摄像头检测人脸并截图
def camera(window_name, path_name):# Linux 不显示图形界面cv2.namedWindow(window_name)# 视频来源,来自USB摄像头cap = cv2.VideoCapture(0)# 告诉OpenCV使用人脸识别分类器classfier = cv2.CascadeClassifier(os.getcwd()+"/haarcascade_frontalface_alt.xml")# 识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组color = (0, 255, 0)num = 0while cap.isOpened():ok, frame = cap.read()  # 读取一帧数据if not ok:break# 将当前桢图像转换成灰度图像grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))if len(faceRects) > 0:  # 大于0则检测到人脸for faceRect in faceRects:  # 单独框出每一张人脸x, y, w, h = faceRectnum = num + 1# 将当前帧保存为图片img_name = "%s/%d.jpg" % (path_name, num)image = frame[y - 10: y + h + 10, x - 10: x + w + 10]cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])# 延迟 60s,不要太频繁的发送,知道来了就可以了# time.sleep(60)# 画出矩形框cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)# 显示当前捕捉到了多少人脸图片了font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)# 显示图像 Linux 下注释掉即可cv2.imshow(window_name, frame)c = cv2.waitKey(10)if c & 0xFF == ord('q'):break# 释放摄像头并销毁所有窗口cap.release()cv2.destroyAllWindows()if __name__ == '__main__':camera("watchdog", os.getcwd()+"/face")
代码解析
1. 导入必要的模块
# -*- coding: utf-8 -*-
# import 进openCV的库
import cv2
import os
import time
  • # -*- coding: utf-8 -*-:指定文件编码为 UTF-8。
  • import cv2:导入 OpenCV 库,用于图像处理和人脸检测。
  • import os:导入 os 模块,用于文件路径操作。
  • import time:导入 time 模块,用于延迟操作。
2. 定义 camera 函数
def camera(window_name, path_name):
  • def camera(window_name, path_name)::定义一个名为 camera 的函数,参数 window_name 是窗口名称,path_name 是保存截图的路径。
3. 创建窗口
    # Linux 不显示图形界面cv2.namedWindow(window_name)
  • cv2.namedWindow(window_name):创建一个窗口,用于显示视频流。在 Linux 下可以注释掉这行代码以不显示图形界面。
4. 打开摄像头
    # 视频来源,来自USB摄像头cap = cv2.VideoCapture(0)
  • cv2.VideoCapture(0):打开默认摄像头。参数 0 表示默认摄像头。
5. 加载人脸识别分类器
    # 告诉OpenCV使用人脸识别分类器classfier = cv2.CascadeClassifier(os.getcwd()+"/haarcascade_frontalface_alt.xml")
  • cv2.CascadeClassifier(...):加载预训练的 Haar 级联分类器,用于检测人脸。
  • os.getcwd()+"/haarcascade_frontalface_alt.xml":指定分类器文件的路径。
6. 设置边框颜色
    # 识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组color = (0, 255, 0)
  • color = (0, 255, 0):定义边框颜色为绿色。
7. 主循环
    num = 0while cap.isOpened():ok, frame = cap.read()  # 读取一帧数据if not ok:break# 将当前桢图像转换成灰度图像grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))if len(faceRects) > 0:  # 大于0则检测到人脸for faceRect in faceRects:  # 单独框出每一张人脸x, y, w, h = faceRectnum = num + 1# 将当前帧保存为图片img_name = "%s/%d.jpg" % (path_name, num)image = frame[y - 10: y + h + 10, x - 10: x + w + 10]cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])# 延迟 60s,不要太频繁的发送,知道来了就可以了# time.sleep(60)# 画出矩形框cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)# 显示当前捕捉到了多少人脸图片了font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)# 显示图像 Linux 下注释掉即可cv2.imshow(window_name, frame)c = cv2.waitKey(10)if c & 0xFF == ord('q'):break
  • num = 0:初始化计数器。
  • while cap.isOpened()::进入无限循环,实时读取摄像头图像。
  • ok, frame = cap.read():从摄像头读取一帧图像。
  • if not ok::检查读取是否成功,如果失败则退出循环。
  • grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY):将图像转换为灰度图像。
  • faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)):检测图像中的人脸。
  • if len(faceRects) > 0::检查是否检测到人脸。
  • for faceRect in faceRects::遍历检测到的每个人脸。
  • x, y, w, h = faceRect:获取人脸的位置和大小。
  • num = num + 1:增加计数器。
  • img_name = "%s/%d.jpg" % (path_name, num):生成保存图像的文件名。
  • image = frame[y - 10: y + h + 10, x - 10: x + w + 10]:裁剪人脸区域并扩大边界。
  • cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9]):保存图像。
  • cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2):在图像上绘制矩形框。
  • font = cv2.FONT_HERSHEY_SIMPLEX:设置字体样式。
  • cv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4):在图像上显示当前捕捉到的人脸数量。
  • cv2.imshow(window_name, frame):显示带有矩形标记的图像。
  • c = cv2.waitKey(10):等待 10 毫秒,等待用户按键。
  • if c & 0xFF == ord('q')::按 ‘q’ 键退出循环。
8. 释放资源
    # 释放摄像头并销毁所有窗口cap.release()cv2.destroyAllWindows()
  • cap.release():释放摄像头资源。
  • cv2.destroyAllWindows():关闭所有 OpenCV 窗口。
9. 主程序入口
if __name__ == '__main__':camera("watchdog", os.getcwd()+"/face")
  • if __name__ == '__main__'::检查是否直接运行此脚本。
  • camera("watchdog", os.getcwd()+"/face"):调用 camera 函数,传入窗口名称和保存截图的路径。
完整代码
# -*- coding: utf-8 -*-
# import 进openCV的库
import cv2
import os
import time
# 调用摄像头检测人脸并截图
def camera(window_name, path_name):# Linux 不显示图形界面cv2.namedWindow(window_name)# 视频来源,来自USB摄像头cap = cv2.VideoCapture(0)# 告诉OpenCV使用人脸识别分类器classfier = cv2.CascadeClassifier(os.getcwd()+"/haarcascade_frontalface_alt.xml")# 识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组color = (0, 255, 0)num = 0while cap.isOpened():ok, frame = cap.read()  # 读取一帧数据if not ok:break# 将当前桢图像转换成灰度图像grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))if len(faceRects) > 0:  # 大于0则检测到人脸for faceRect in faceRects:  # 单独框出每一张人脸x, y, w, h = faceRectnum = num+1# 将当前帧保存为图片img_name = "%s/%d.jpg" % (path_name, num)image = frame[y - 10: y + h + 10, x - 10: x + w + 10]cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])# 延迟 60s,不要太频繁的发送,知道来了就可以了# time.sleep(60)# 画出矩形框cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)# 显示当前捕捉到了多少人脸图片了font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)# 显示图像 Linux 下注释掉即可cv2.imshow(window_name, frame)c = cv2.waitKey(10)if c & 0xFF == ord('q'):break# 释放摄像头并销毁所有窗口cap.release()cv2.destroyAllWindows()if __name__ == '__main__':camera("watchdog", os.getcwd()+"/face")
测试
  1. 确保你的摄像头正常工作。

  2. 运行脚本:

    python3 face_detection.py
    
  3. 打开摄像头后,你会看到一个窗口显示实时视频流,并且在检测到的人脸周围绘制绿色矩形。

  4. 按 ‘q’ 键退出程序。

总结

本文详细介绍了如何使用 Python 和 OpenCV 库实现摄像头人脸检测并截图,并通过具体的代码示例展示了整个过程。通过使用 cv2.VideoCapture 打开摄像头,cv2.CascadeClassifier 加载预训练的 Haar 级联分类器,cv2.cvtColor 转换图像颜色空间,cv2.rectangle 绘制矩形,cv2.imwrite 保存图像,最终实现了在实时视频流中检测并保存人脸图像的功能。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/60683.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu中使用纯命令行进行Android开发

安装JDK sudo apt install openjdk-8-jdk注意本文采用jdk1.8,因为后文设置的android版本太低。 安装Android命令行工具和SDK(不可用): 访问https://developer.android.google.cn/studio,拉到最底下,找到…

2023年高校大数据挑战赛A题中文文本纠错求解全过程文档及程序

2023年高校大数据挑战赛 A题 中文文本纠错 原题再现: 中文文本纠错的任务主要是针对中文文本中出现的错误进行检测和纠正,属于人工智能自然语言处理的研究子方向。中文文本纠错通常使用的场景有政务公文、裁判文书、新闻出版等,中文文本纠错…

Python基础学习-07不可重复的set集合

目录 1、set的定义 2、set的基本操作 3、set的函数 4、嵌套和解析 5、本节总结 1、set的定义 • set的属性 1)无序不重复元素集 2)不支持索引、切片、嵌套 3)主要用于关系测试和消除重复元素 4)支持&#x…

catchadmin-webman 宝塔 部署

1:宝塔的php 中删除禁用函数 putenv 问题: 按照文档部署的时候linux(php) vue (本地) 无法访问后端api/login 的接口 。 解决办法: webman 没有配置nginx 反向代理 配置就能正常访问了

Tomcat 和 Netty 的区别及应用场景分析

在 Java Web 开发中,Tomcat 和 Netty 都是常见的网络框架,它们各自有着不同的设计理念和适用场景。本文将通过详细的对比和实际场景示例,帮助你理解 Tomcat 和 Netty 在功能、性能、架构等方面的差异,帮助你在实际开发中做出更合理…

三次握手理解

1. 背景介绍 在TCP(传输控制协议)通信中,为了建立可靠的连接,使用了三次握手的机制。这是一种在客户端和服务器之间进行连接初始化的方法,其目的是确保双方都有发送和接收数据的能力,并且协商好连接的相关…

要卸载 Grafana 或者从 TiDB 集群中删除 Grafana 服务节点,你需要按以下步骤操作

要卸载 Grafana 或者从 TiDB 集群中删除 Grafana 服务节点,你需要按以下步骤操作,具体步骤取决于你想要卸载的是 Grafana 软件 还是 TiDB 集群中的 Grafana 服务节点。下面是两种情况的卸载步骤。 1. 卸载 TiDB 集群中的 Grafana 节点 如果你只想卸载 …

Ubuntu 20.04 配置开发环境(持续更新)

搜狗输入法不能显示中文 sudo apt install libqt5qml5 libgsettings-qt1 sudo apt install libqt5qml5 libqt5quick5 libqt5quickwidgets5 qml-module-qtquick2 编译环境配置 sudo apt-get update #base tools of ubuntu sudo apt install net-tools gitk tree vim termina…

Vim 编辑器学习笔记

文章目录 Vim 编辑器学习笔记1. Vi/Vim 的发展历史简介2. Vim 的三种操作模式3. 光标移动命令4. 常用编辑操作命令底行模式常用命令文件操作显示行号查找与替换 命令模式常用命令删除复制与粘贴撤销与重做**可视模式** 5. 分屏操作6. 进阶学习与插件管理 Vim 编辑器学习笔记 1…

力扣515:在每个树行中找最大值

给定一棵二叉树的根节点 root &#xff0c;请找出该二叉树中每一层的最大值。 示例1&#xff1a; 输入: root [1,3,2,5,3,null,9] 输出: [1,3,9]示例2&#xff1a; 输入: root [1,2,3] 输出: [1,3]提示&#xff1a; 二叉树的节点个数的范围是 [0,104]-231 < Node.val &l…

<项目代码>YOLOv8 番茄识别<目标检测>

YOLOv8是一种单阶段&#xff08;one-stage&#xff09;检测算法&#xff0c;它将目标检测问题转化为一个回归问题&#xff0c;能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法&#xff08;如Faster R-CNN&#xff09;&#xff0c;YOLOv8具有更高的…

__VUE_PROD_HYDRATION_MISMATCH_DETAILS__ is not explicitly defined

VUE_PROD_HYDRATION_MISMATCH_DETAILS 未明确定义。您正在运行 Vue 的 esm-bundler 构建&#xff0c;它期望这些编译时功能标志通过捆绑器配置全局注入&#xff0c;以便在生产捆绑包中获得更好的tree-shaking优化。 Vue.js应用程序正在使用ESM&#xff08;ECMAScript模块&#…

香港海洋投资发展有限公司:描绘海洋牧场未来蓝图,打造全球海洋经济标杆

在浩瀚无垠的蓝色海域中&#xff0c;香港海洋投资发展有限公司&#xff08;以下简称“香港海洋投资”&#xff09;正以其卓越的领导力和深厚的实力&#xff0c;引领着海洋经济的新一轮发展浪潮。近年来&#xff0c;公司倾力打造的海洋牧场项目&#xff0c;不仅成为了企业发展的…

《FreeRTOS列表和列表项篇》

FreeRTOS列表和列表项 1. 什么是列表和列表项&#xff1f;1.1 列表list1.2 列表项list item 2. 列表和列表项的初始化2.1 列表的初始化2.2 列表项的初始化 3. 列表项的插入4. 列表项末尾插入5. 列表项的删除6. 列表的遍历 列表和列表项是FreeRTOS的一个数据结构&#xff0c;是F…

MySQL进阶-索引的组合索引

练习题目 题目链接难度SQL进阶-索引的组合索引★★★☆☆ SQL思路 SQL进阶-索引的组合索引 初始化数据 drop table if exists user_profile; CREATE TABLE user_profile ( id int NOT NULL, device_id int NOT NULL, gender varchar(14) NOT NULL, age int , university va…

【iStat Menus for MacBook状态栏菜单系统监控工具--安装教程【简单操作,随时了解电脑情况】

Mac分享吧 文章目录 iStat Menus for MacBook状态栏菜单系统监控软件 效果图展示一、iStat Menus 状态栏菜单系统监控软件 Mac电脑版——v6.73(1240)1️⃣&#xff1a;下载软件2️⃣&#xff1a;安装软件3️⃣&#xff1a;软件自定义配置 安装完成&#xff01;&#xff01;&am…

netmap.js:基于浏览器的网络发现工具

netmap.js是一款基于浏览器&#xff0c;用于提供主机发现和端口扫描功能的网络发现工具。 netmap.js的执行速度也非常的快&#xff0c;由于其使用了es6-promise-pool&#xff0c;因此它可以有效地运行浏览器允许的最大并发连接数。 动机 由于我正需要一个基于浏览器的端口扫…

mapbox进阶技巧

1、filter过滤&#xff0c;使用过滤&#xff0c;可以根据不同条件展示我们想要展示的数据 代码示例&#xff1a;核心代码&#xff0c;根据点的size是否满足条件进行展示 filter: [<, size, 30] <!DOCTYPE html> <html lang"en"><head><me…

计算机网络 (2)计算机网络的类别

计算机网络的类别繁多&#xff0c;根据不同的分类原则&#xff0c;可以得到各种不同类型的计算机网络。 一、按覆盖范围分类 局域网&#xff08;LAN&#xff09;&#xff1a; 定义&#xff1a;局域网是一种在小区域内使用的&#xff0c;由多台计算机组成的网络。覆盖范围&#…

实战OpenCV之文字识别

基础入门 文字识别技术,也称为光学字符识别(Optical Character Recognition,OCR),是一种让计算机能够“读取”图像中的文字,并将其转化为可编辑文本的技术。这项技术在许多领域都有广泛的应用,包括但不限于:图片文字识别、文档管理、自动化数据输入、历史文献数字化。 …