ChatGLM2-6B微调记录【2】

  • 模型推理测试
    • 微调前的chatglm2-6b模型
    • 运行python predict.py --mode glm2 --model_path chatglm2-6b/
    • 运行结果记录
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.torch.utils._pytree._register_pytree_node(
2024-11-08 17:21:16.440515: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-11-08 17:21:16.562434: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-11-08 17:21:17.121689: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:21:17.121775: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:21:17.121784: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.torch.utils._pytree._register_pytree_node(
Loading checkpoint shards:   0%|                                                                             | 0/7 [00:00<?, ?it/s]/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/modeling_utils.py:488: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.return torch.load(checkpoint_file, map_location=map_location)
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████| 7/7 [00:10<00:00,  1.52s/it]
根据您提供的文本,我可以抽取出以下三个相关三元组:1. 性能故障 -> 发动机水温高
2. 部件故障 -> 风扇始终是低速转动
3. 组成 -> 高速档不工作
4. 检测工具 -> 开空调其中,第一个三元组表示发动机出现了性能故障,导致发动机水温高。第二个三元组表示风扇出现了部件故障,始终是低速转动。第三个三元组表示高速档不工作,可能是由于某个部件出现了问题。最后一个三元组表示开空调时出现了性能故障。
  • 微调后的chatglm2-6b模型
    • 运行python predict.py --mode glm2 --model_path output-glm2/epoch-1-step-90/
    • 运行结果记录
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.torch.utils._pytree._register_pytree_node(
2024-11-08 17:30:12.764824: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-11-08 17:30:12.887176: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-11-08 17:30:13.455307: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:30:13.455391: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:30:13.455400: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.torch.utils._pytree._register_pytree_node(
Loading checkpoint shards:   0%|                                                                             | 0/7 [00:00<?, ?it/s]/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/modeling_utils.py:488: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.return torch.load(checkpoint_file, map_location=map_location)
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████| 7/7 [00:10<00:00,  1.55s/it]
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/peft/utils/save_and_load.py:198: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.adapters_weights = torch.load(filename, map_location=torch.device(device))
发动机_部件故障_水温高
风扇_部件故障_始终是低速转动
高速档_部件故障_不工作
  • 运行python predict.py --mode glm2 --model_path output-glm2/epoch-2-step-180/
  • 运行结果记录
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.torch.utils._pytree._register_pytree_node(
2024-11-08 17:34:23.878094: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-11-08 17:34:24.001155: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-11-08 17:34:24.560807: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:34:24.560894: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:34:24.560903: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.torch.utils._pytree._register_pytree_node(
Loading checkpoint shards:   0%|                                                                             | 0/7 [00:00<?, ?it/s]/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/modeling_utils.py:488: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.return torch.load(checkpoint_file, map_location=map_location)
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████| 7/7 [00:10<00:00,  1.55s/it]
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/peft/utils/save_and_load.py:198: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.adapters_weights = torch.load(filename, map_location=torch.device(device))
发动机_部件故障_水温高
风扇_部件故障_低速转动
高速档_部件故障_不工作

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/59833.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

置信传播算法复现

本文所涉及所有资源均在 传知代码平台 可获取。 目录 一.背景及意义介绍 1. 实际应用广泛 2. 理论研究重要性

操作系统-设备管理

一、中断的基本概念 中断是指在计算机执行程序的过程中&#xff0c;出现了某种紧急或异常的事件&#xff08;中断请求&#xff09;&#xff0c;CPU需要暂停正在执行的程序&#xff0c;转去处理该事件&#xff08;执行中断服务程序&#xff09;&#xff0c;并在处理完毕后返回断…

读数据工程之道:设计和构建健壮的数据系统32序列化和云网络

1. 序列化 1.1. 仅仅通过从CSV转换到Parquet序列化&#xff0c;任务性能就提高了上百倍 1.2. 基于行的序列化 1.2.1. 基于行的序列化是按行来组织数据 1.2.2. 对于那些半结构化的数据&#xff08;支持嵌套和模式变化的数据对象&#xff09;​&#xff0c;基于行的序列化需要…

R树、Quad树 (Quad Tree)数据结构详细解读

一、R 树 (R-Tree) R 树&#xff08;R-Tree&#xff09; 是一种 树形数据结构&#xff0c;主要用于在 多维空间&#xff08;如 2D 或 3D 空间&#xff09;中存储和检索 空间对象。R 树的设计目标是支持高效的 区域查询&#xff08;range query&#xff09; 和 邻近查询&#x…

【软件工程】ATAM架构权衡评估方法

ATAM架构权衡评估方法 概述质量属性有哪些&#xff1f;质量属性的效用树怎么构建&#xff1f;如何确定质量属性的优先级&#xff1f; 概述 ATAM&#xff08;Architecture Tradeoff Analysis Method&#xff09;是一种系统架构评估方法&#xff0c;由卡梅隆大学软件工程协会提出…

了解数据库分区

分区是将一个表或索引按照某种规则划分为多个更小的、更易于管理的部分。分区是将表的数据分成更小、更易于管理的部分的过程。分区有一些显著的好处&#xff0c;包括改善查询性能、增强数据库的可用性和可维护性。 1.为什么要分区&#xff1f; 表分区&#xff08;Partitioning…

深度学习:Cross-attention详解

Cross-attention详解 Cross-attention&#xff0c;也称为编码器-解码器注意力&#xff0c;是Transformer架构中的一个关键组件&#xff0c;特别用于在解码器中整合来自编码器的信息。这种机制允许解码器在生成每个输出时&#xff0c;利用整个输入序列的上下文信息&#xff0c;…

09 顺序表的修改操作

顺序表的修改操作 一、数据修改 ​ 操作的步骤&#xff1a; ​ 1&#xff09;判断顺序表是否为空&#xff0c;如果没有数据&#xff0c;操作失败&#xff1b; ​ 2&#xff09;判断修改位置是否合理&#xff0c;不合理则操作失败&#xff1b; ​ 3&#xff09;将i位置中的数…

深度学习⑨GANs

Discriminative and Generative Models Deep learning中主要两种模型 判别模型专注于从输入预测输出,例如分类任务。学习数据点和标签之间的特征 生成模型则试图理解数据是如何产生的,能够生成新的数据样本。理解数据分布和是否可以被预测 Quiz time: Discriminative mo…

游戏中Dubbo类的RPC设计时的注意要点

一.消费方 1.需要使用到动态代理&#xff0c;代理指定的接口&#xff0c;这样子接口被调用时&#xff0c;就可以拿到&#xff1a;"类名 方法名参数返回值" 这些类型。 2.既然是rpc&#xff0c;那么接口被调用时&#xff0c;肯定在动态代理中会进行网络消息的发送&a…

react中的组件传参

在React中&#xff0c;组件之间的数据传递是构建用户界面的关键部分。根据不同的需求和场景&#xff0c;有多种方式可以在React中传递参数&#xff0c;以下是对这些方式的详细说明&#xff1a; 一、通过props传递参数 这是React中最基本和最常用的数据传递方式。父组件通过属…

OSPF动态路由配置实验:实现高效网络自动化

实验主题&#xff1a;OSPF动态路由协议配置 实验背景 OSPF&#xff08;Open Shortest Path First&#xff09;是一种基于链路状态的路由协议&#xff0c;广泛应用于中大型网络中。它采用Dijkstra算法计算最短路径&#xff0c;以确保网络中的路由更新快速、稳定&#xff0c;并能…

AI引领PPT创作:迈向“免费”时代的新篇章?

AI引领PPT创作&#xff1a;迈向“免费”时代的新篇章&#xff1f; 在信息爆炸的时代&#xff0c;演示文稿&#xff08;PPT&#xff09;作为传递信息和展示观点的重要工具&#xff0c;其制作效率和质量直接关系到演讲者的信息传递效果。随着人工智能&#xff08;AI&#xff09;…

区块链技术在供应链管理中的应用

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 区块链技术在供应链管理中的应用 区块链技术在供应链管理中的应用 区块链技术在供应链管理中的应用 引言 区块链技术概述 定义与…

CelebV-Text——从文本生成人脸视频的数据集

概述 近年来&#xff0c;生成模型在根据文本生成和编辑视频方面受到了广泛关注。然而&#xff0c;由于缺乏合适的数据集&#xff0c;生成人脸视频领域仍然是一个挑战。特别是&#xff0c;生成的视频帧质量较低&#xff0c;与输入文本的相关性较弱。在本文中&#xff0c;我们通…

【重学 MySQL】八十二、深入探索 CASE 语句的应用

【重学 MySQL】八十二、深入探索 CASE 语句的应用 CASE语句的两种形式CASE语句的应用场景数据分类动态排序条件计算在 SELECT 子句中使用在 WHERE子句中使用在 ORDER BY 子句中使用 注意事项 在MySQL中&#xff0c;CASE 语句提供了一种强大的方式来实现条件分支逻辑&#xff0c…

基于卷积神经网络的农作物病虫害识别系统(pytorch框架,python源码)

更多图像分类、图像识别、目标检测等项目可从主页查看 功能演示&#xff1a; 基于卷积神经网络的农作物病虫害检测&#xff08;pytorch框架&#xff09;_哔哩哔哩_bilibili &#xff08;一&#xff09;简介 基于卷积神经网络的农作物病虫害识别系统是在pytorch框架下实现的…

VLAN 高级技术实验

目录 一、实验背景 二、实验任务 三、实验步骤 四、实验总结 一、实验背景 假如你是公司的网络管理员&#xff0c;为了节省内网的IP地址空间&#xff0c;你决定在内网部署VLAN聚合&#xff0c;同时为了限制不同业务之间的访问&#xff0c;决定同时部署MUX VLAN。 二、实验…

Vue禁止打开控制台/前端禁止打开控制台方法/禁用F12/禁用右键

代码片段展示了如何在前端页面中禁用右键菜单、禁止文本选择、阻止特定键盘操作&#xff08;如F12键打开开发者工具&#xff09;&#xff0c;以及通过检测窗口尺寸变化来尝试阻止用户调试页面。 // 鼠标禁止右键禁止打开控制台及键盘禁用forbidden(){// 1.禁用右键菜单document…

Windows下mysql数据库备份策略

Windows下mysql的增量备份和全量备份&#xff0c;并利用schtasks设置定时任务执行bat脚本。 一、备份要求 序号 备份类型 备份频次 备份时间 1 增量备份 每周一-每周六各一次 18:00:00 2 全量备份 每周日一次 18:00:00 二、备份方法 2.1增量备份 2.1.1准备工作…