利用LangChain与LLM打造个性化私有文档搜索系统

我们知道LLM(大语言模型)的底模是基于已经过期的公开数据训练出来的,对于新的知识或者私有化的数据LLM一般无法作答,此时LLM会出现“幻觉”。针对“幻觉”问题,一般的解决方案是采用RAG做检索增强。

但是我们不可能把所有数据都丢给LLM去学习,比如某个公司积累的某个行业的大量内部知识。此时就需要一个私有化的文档搜索工具了。

本文聊聊如何使用LangChain结合LLM快速做一个私有化的文档搜索工具。之前介绍过,LangChain几乎是LLM应用开发的第一选择,它的野心也比较大,它致力于将自己打造成LLM应用开发的最大社区。自然,它有这方面的成熟解决方案。

文末,还会向朋友们推荐一款非常好用的AI机器人和LLM API超市,价格实惠又稳定,还可以领一波福利。

1. RAG检索流程

使用 LangChain 实现私有化文档搜索的主要流程,如下图所示:

文档加载 → 文档分割 → 文档嵌入 → 向量化存储 → 文档检索 → 生成回答

2. 代码实践细节

2.1. 文档加载

首先,我们需要加载文档数据。文档可以是各种格式,比如文本文件、PDF、Word 等。使用 LangChain,可以轻松地加载这些文档。下面以PDF为例:

from langchain_community.document_loaders import PyPDFLoaderloader = PyPDFLoader("./GV2.pdf")
docs = loader.load()

2.2. 文档分割

加载的文档通常会比较大,为了更高效地处理和检索,我们需要将文档分割成更小的段落或句子。LangChain 提供了便捷的文本分割工具,可以按句子、块长度等方式分割文档。

from langchain.text_splitter import RecursiveCharacterTextSplittertext_splitter = RecursiveCharacterTextSplitter(chunk_size=50,chunk_overlap=20,separators=["\n", "。", "!", "?", ",", "、", ""],add_start_index=True,
)
texts = text_splitter.split_documents(docs)

分割后的文档内容可以进一步用于生成向量。

2.3. 文档嵌入 Embeddings

文档分割后,我们需要将每一段文本转换成向量,这个过程称为文档嵌入。文档嵌入是将文本转换成高维向量,这是相似性搜索的关键。这里我们选择OpenAI的嵌入模型来生成文档的嵌入向量。

from langchain_openai import OpenAIEmbeddingsembeddings_model = OpenAIEmbeddings(openai_api_key="sk-xxxxxxxxxxx",openai_api_base="https://api.302.ai/v1",
)txts = [txt.page_content for txt in texts]embeddings = embeddings_model.embed_documents(txts)

2.4. 文档向量化存储

接下来,我们需要将生成的向量化的文档,存入向量数据库中。向量数据库主要用来做相似性搜索,可以高效地存储和检索高维向量。LangChain 支持与多种向量数据库的集成,比如 Pinecone、FAISS、Chroma 等。

本文以FAISS为例,首先需要安装FAISS,直接使用pip install faiss-cpu安装。

from langchain_community.vectorstores import FAISSdb = FAISS.from_documents(texts, embeddings_model)
FAISS.save_local(db, "faiss_db2")

2.5. 文档检索

当用户提出问题时,我们需要在向量数据库中检索最相关的文档。检索过程是计算用户问题的向量表示,然后在向量数据库中查找与之最相似的文档。最后将找到的文档内容,拼接成一个大的上下文。

向量数据库的检索支持多种模式,本文先用最简单的,后续再出文章继续介绍别的模式。

from langchain.retrievers.multi_query import MultiQueryRetrieverretriever = db.as_retriever()
# retriever = db.as_retriever(search_type="similarity_score_threshold",search_kwargs={"score_threshold":.1,"k":5})
# retriever = db.as_retriever(search_type="mmr")
# retriever = MultiQueryRetriever.from_llm(
#             retriever = db.as_retriever(),
#             llm = model,
#         )context = retriever.get_relevant_documents(query="张学立是谁?")_content = ""
for i in context:_content += i.page_content

2.6. 将检索内容丢给LLM作答

最后,我们需要将检索到的文档内容丢入到 prompt 中,让LLM生成回答。LangChain 可以PromptTemplate模板的方式,将检索到的上下文动态嵌入到 prompt 中,然后丢给LLM,这样可以生成准确的回答。

from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParserquestion = "张学立是谁?"
template = [("system","你是一个处理文档的助手,你会根据下面提供<context>标签里的上下文内容来继续回答问题.\n 上下文内容\n <context>\n{context} \n</context>\n",),("human", "你好!"),("ai", "你好"),("human", "{question}"),
]
prompt = ChatPromptTemplate.from_messages(template)messages = prompt.format_messages(context=_content, question=question)
response = model.invoke(messages)output_parser = StrOutputParser()
output_parser.invoke(response)

2.7. 完整代码

最后,将以上所有代码串起来,整合到一起,如下:

from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParsermodel = ChatOpenAI(model_name="gpt-3.5-turbo",openai_api_key="sk-xxxxxxx",openai_api_base="https://api.302.ai/v1",
)loader = PyPDFLoader("./GV2.pdf")
docs = loader.load()text_splitter = RecursiveCharacterTextSplitter(chunk_size=50,chunk_overlap=20,separators=["\n", "。", "!", "?", ",", "、", ""],add_start_index=True,
)
texts = text_splitter.split_documents(docs)embeddings_model = OpenAIEmbeddings(openai_api_key="sk-xxxxxxx",openai_api_base="https://api.302.ai/v1",
)
txts = [txt.page_content for txt in texts]
embeddings = embeddings_model.embed_documents(txts)db = FAISS.from_documents(texts, embeddings_model)
FAISS.save_local(db, "faiss_db2")retriever = db.as_retriever()template = [("system","你是一个处理文档的助手,你会根据下面提供<context>标签里的上下文内容来继续回答问题.\n 上下文内容\n <context>\n{context} \n</context>\n",),("human", "你好!"),("ai", "你好"),("human", "{question}"),
]
prompt = ChatPromptTemplate.from_messages(template)question = "张学立是谁?"
context = retriever.get_relevant_documents(query=question)
_content = ""
for i in context:_content += i.page_contentmessages = prompt.format_messages(context=_content, question=question)
response = model.invoke(messages)output_parser = StrOutputParser()
output_parser.invoke(response)

2.8. 总结、推荐

通过 LangChain可以轻松实现私有化文档搜索,充分利用LLM的能力来处理和检索文档信息。按照文中的步骤,你也可以轻松实现。

好的问答系统离不开优秀的LLM,根据我的个人经验,OpenAI的大模型能力排名是Top1的。但是使用OpenAI不方便,不但需要梯子而且还不稳定。

一款好的LLM摆在面前,却用不了,着实头疼。有没有方便稳定的方式呢?当然有啦,我推荐一款AI自助平台,不但有问答机器人、文生图机器人、文生视频机器人,还有常见的LLM API,稳定又还便宜。具体使用方法见原文链接。
在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/58899.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ 基础语法 一

C 基础语法 一 文章目录 C 基础语法 一const 限定符常量指针类型别名autodecltypeQStringvector迭代器指针和数组显示转换static_castconst_cast 函数尽量使用常量引用数组形参不要返回局部对象的引用和指针返回数组指针 C四种转换内联函数constexpr函数函数指针 const 限定符 …

tensorflow案例4--人脸识别(损失函数选取,调用VGG16模型以及改进写法)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 前言 这个模型结构算上之前的pytorch版本的&#xff0c;算是花了不少时间&#xff0c;但是效果一直没有达到理想情况&#xff0c;主要是验证集和训练集准确率…

力扣每日一题 超级饮料的最大强化能量 动态规划(dp)

来自未来的体育科学家给你两个整数数组 energyDrinkA 和 energyDrinkB&#xff0c;数组长度都等于 n。这两个数组分别代表 A、B 两种不同能量饮料每小时所能提供的强化能量。 你需要每小时饮用一种能量饮料来 最大化 你的总强化能量。然而&#xff0c;如果从一种能量饮料切换到…

全国产 V7 690T+FT6678 高性能实时信号处理平台设计原理

1、概述 全国产 V7 690TFT6678 高性能实时信号处理平台组成如图 1 所示&#xff0c;包含 1 片SMQ7VX690TFFG1761 和两片 FT-6678&#xff08;国防科大&#xff09;的 DSP&#xff0c;总共 3 个主芯片&#xff1b;每个主芯片外部各搭配 1 组 64bit 的 DDR3 内存模组以及各芯片启…

0.STM32F1移植到F0的各种经验总结

1.结构体的声明需放在函数的最前面 源代码&#xff1a; /*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); //开启USART1的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructu…

Linux高阶——1027—守护进程

1、守护进程的基本流程 1、父进程创建子进程&#xff0c;父进程退出 守护进程是孤儿进程&#xff0c;但是是工程师人为创建的孤儿进程&#xff0c;低开销模式运行&#xff0c;对系统没有压力 2、子进程&#xff08;守护进程&#xff09;脱离控制终端&#xff0c;创建新会话 …

Selective Generation for Language Models 语言模型的选择性生成

生成式语言模型&#xff08;Generative Language Models, GLMs&#xff09;在文本生成任务中取得了显著进展。然而&#xff0c;生成内容的“幻觉”现象&#xff0c;即生成内容与事实或真实语义不符的问题&#xff0c;仍是GLMs在实际应用中的一个重大挑战。为了解决这一问题&…

-bash: ./my_rename.sh: /bin/bash^M: bad interpreter: No such file or directory

在windows上写了一个shell脚本&#xff0c;在Linux上执行时报错&#xff0c;然后看下解决办法&#xff1a; 查了下&#xff0c;其实就是windows系统里文件行尾的换行符和Linux不同引起的&#xff0c; sed -i s/\r$// my.sh用这行代码处理一下&#xff0c;就可以正常运行了。 执…

flutter区别于vue的写法

View.dart 页面渲染&#xff1a; 类似于vue里面使用 <template> <div> <span> <textarea>等标签绘制页面, flutter 里面则是使用不同的控件来绘制页面 样式 与传统vue不同的是 flutter里面没有css/scss样式表&#xff0c; Flutter的理念是万物皆…

idea免费安装步骤,(java集成开发环境)超详细

第一步 点击链接下载 百度网盘 请输入提取码 提取码是idea 下载步骤 可设也可不设置 我就没有设置 下一步 就点击安装就大功告成了

SAP RFC 用户安全授权

一、SAP 通讯用户 对于RFC接口的用户&#xff0c;使用五种用户类型之一的“通讯”类型&#xff0c;这种类型的用户没有登陆SAPGUI的权限。 二、对调用的RFC授权 在通讯用户内部&#xff0c;权限对象&#xff1a;S_RFC中&#xff0c;限制进一步可以调用的RFC函数授权&#xff…

大数据-201 数据挖掘 机器学习理论 - 决策树 局部最优 剪枝 分裂 二叉分裂

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…

计算机网络-总线型以太网(ethernet)-知识点小结

广域网与局域网区分: 广域网: 广域网不使用局域网技术, 传输介质 主要是光纤和电话线 常见广域网技术 综合业务数字网&#xff08;ISDN&#xff09;、 帧中继&#xff08;Frame Relay&#xff09;、 异步传输模式 局域网: 以太网--ethernet 简介: 是一种总线型局域网技术&#…

透明加密技术是什么?透明加密技术的原理与应用实践(内含代表性软件分享)

触目惊心&#xff01;10大典型间谍案例回顾 张某离职前搜集大量文件资料&#xff0c;甚至拆开电脑主机拷贝文件 私自存有5200份文件资料 其中标注绝密级的59份 机密级848份 秘密级541份 在当今这个信息化高速发展的时代&#xff0c;透明加密技术已不容忽视。那么&#xff…

C/C++ 每日一练:二叉树的先序遍历

二叉树 binary tree 定义 二叉树是一种树状数据结构&#xff0c;非线性数据结构&#xff0c;代表“祖先”与“后代”之间的派生关系&#xff0c;体现了“一分为二”的分治逻辑。与链表类似&#xff0c;二叉树的基本单元是节点&#xff0c;二叉树的每个节点包含三个主要部分&am…

OpenCV开发笔记(八十二):两图拼接使用渐进色蒙版场景过渡缝隙

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/143432922 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…

Unity程序化生成地形

制作地形&#xff1a; 绘制方块逐个绘制方块并加噪波高度删除Gizmos和逐个绘制 1.draw quad using System.Collections; using System.Collections.Generic; using UnityEngine;[RequireComponent(typeof(MeshFilter))] public class mesh_generator : MonoBehaviour {Mesh m…

基于MoviNet检测视频中危险暴力行为

项目源码获取方式见文章末尾&#xff01; 600多个深度学习项目资料&#xff0c;快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【Faster & Mask R-CNN模型实现啤酒瓶瑕疵检测】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生…

Java项目实战II基于Java+Spring Boot+MySQL的桂林旅游景点导游平台(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 基于Java、…

每日读则推(十四)——Meta Movie Gen: the most advanced media foundation models to-date

premiere n.首映,首次公演 v.首次公演(戏剧、音乐、电影) a.首要的,最早的 Today we’re premiering Meta Movie Gen: the most advanced media foundation models to-date. 迄今,到现在为止 …