数据结构——基础知识补充

1.队列

1.普通队列

queue.Queue 是 Python 标准库 queue 模块中的一个类,适用于多线程环境。它实现了线程安全的 FIFO(先进先出)队列。

2.双端队列

双端队列(Deque,Double-Ended Queue)是一种具有队列和栈性质的数据结构,它允许我们在两端进行元素的添加(push)和移除(pop)操作。在Python中,双端队列可以通过collections模块中的deque类来实现。

deque是一个双端队列的实现,它提供了在两端快速添加和移除元素的能力。

当结合使用appendleft和popleft时,你实际上是在实现一个栈(Stack)的数据结构,因为栈是后进先出(LIFO)的,而这两个操作正好模拟了栈的“压栈”和“弹栈”行为。append和pop结合使用同理。

3.优先队列

优先队列(Priority Queue)是一种特殊的队列,其中的元素按照优先级进行排序。优先级最高的元素总是最先出队。Python 标准库中提供了 queue.PriorityQueue 和 heapq 模块来实现优先队列。

queue.PriorityQueue

queue.PriorityQueue 是 Python 标准库 queue 模块中的一个类,适用于多线程环境。它实现了线程安全的优先队列。

heapq

heapq 模块是 Python 标准库中的一个模块,提供了基于堆的优先队列实现。heapq 模块不是线程安全的,适用于单线程环境。

代码示例:

import queue
from collections import deque
import heapqdef pd_queue():"""# 普通队列 队尾入队 对头出队# put()入队# get() 出队q = queue.Queue()q.put(55)q.put(44)q.put(33)print(q.qsize())print(q.get())print(q.get())print(q.get())"""# deque 双端队列 既可以在队尾进行入队和出队操作#               也可以在队头进行入队和出队操作# append()在队尾入队# appendleft()在队头入队# pop()在队尾出队# popleft()在队头出队# appendleft()和popleft()组合使用时 相当于栈的操作# append()和pop()同理dq = deque()dq.append(10)dq.append(20)dq.appendleft(30)dq.appendleft(40)print(dq.popleft())print(dq.popleft())print(dq.popleft())print(dq.popleft())print("----------------------------------------")pq = queue.PriorityQueue()pq.put((2,"item2"))pq.put((1,"item1"))pq.put((4,"item4"))pq.put((3,"item3"))print(pq.get())print(pq.get())print(pq.get())print(pq.get())print("----------------------------------------")# headq 优先队列 基于堆实现的 要预先定义一个数组作为heap堆对象 线程不安全# heappush() 向队中添加元素元组(优先级 元素值) 优先级的数值越小heap  = []heapq.heappush(heap, (1,"hq1"))heapq.heappush(heap, (3,"hq3"))heapq.heappush(heap, (2,"hq2"))heapq.heappush(heap, (4,"hq4"))print(heapq.heappop(heap))print(heapq.heappop(heap))print(heapq.heappop(heap))print(heapq.heappop(heap))
if __name__ == '__main__':pd_queue()

2.树

1.概念

1.术语

在描述树的各个部分的时候有很多术语。

  • 为了让介绍的内容更容易理解, 需要知道一些树的术语.

  • 不过大部分术语都与真实世界的树相关, 或者和家庭关系相关(如父节点和子节点), 所以它们比较容易理解.

我们先来看一下树的结构

2.树的定义

  • 树(Tree): n(n≥0)个结点构成的有限集合。

    • 当n=0时,称为空树;

    • 对于任一棵非空树(n> 0),它具备以下性质:

    • 树中有一个称为“根(Root)”的特殊结点,用 root 表示;

    • 其余结点可分为m(m>0)个互不相交的有限集T1,T2,... ,Tm,其中每个集合本身又是一棵树,称为原来树的“子树(SubTree)”

    注意:

    • 子树之间不可以相交

    • 除了根结点外,每个结点有且仅有一个父结点;

    • 一棵N个结点的树有N-1条边。

3.树的术语:

  • 1.结点的度(Degree):结点的子树个数.

  • 2.树的度:树的所有结点中最大的度数. (树的度通常为结点的个数N-1)

  • 3.叶子结点(Leaf):度为0的结点. (也称为叶子结点)

  • 4.父结点(Parent):有子树的结点是其子树的根结点的父结点

  • 5.子结点(Child):若A结点是B结点的父结点,则称B结点是A结点的子结点;子结点也称孩子结点。

  • 6.兄弟结点(Sibling):具有同一父结点的各结点彼此是兄弟结点。

  • 7.路径和路径长度:从结点n1到nk的路径为一个结点序列n1 , n2,… , nk, ni是 ni+1的父结点。路径所包含边的个数为路径的长度。

  • 8.结点的层次(Level):规定根结点在1层,其它任一结点的层数是其父结点的层数加1。

  • 9.树的深度(Depth):树中所有结点中的最大层次是这棵树的深度。

2.二叉树

1.概念

二叉树的定义

  • 二叉树可以为空, 也就是没有结点.
  • 若不为空,则它是由根结点和称为其左子树TL和右子树TR的两个不相交的二叉树组成。

二叉树有五种形态:

  • 注意c和d是不同的二叉树, 因为二叉树是有左右之分的.

2.特性

二叉树有几个比较重要的特性, 在笔试题中比较常见:

  • 一个二叉树第 i 层的最大结点数为:2^(i-1), i >= 1;
  • 深度为k的二叉树有最大结点总数为: 2^k - 1, k >= 1;
  • 对任何非空二叉树 T,若n0表示叶结点的个数、n2是度为2的非叶结点个数,那么两者满足关系n0 = n2 + 1。 

3.特殊的二叉树

1.满二叉树(Full Binary Tree)

在二叉树中, 除了最下一层的叶结点外, 每层节点都有2个子结点, 就构成了满二叉树.

2.完全二叉树(Complete Binary Tree)

  • 除二叉树最后一层外, 其他各层的节点数都达到最大个数.
  • 且最后一层从左向右的叶结点连续存在, 只缺右侧若干节点.
  • 满二叉树是特殊的完全二叉树.
  • 下面不是完全二叉树, 因为D节点还没有右结点, 但是E节点就有了左右节点.

4.二叉树的存储

二叉树的存储常见的方式是链表.

链表存储:

  • 二叉树最常见的方式还是使用链表存储.
  • 每个结点封装成一个Node, Node中包含存储的数据, 左结点的引用, 右结点的引用.

5.二叉树遍历

前序遍历(Pre-order Traversal)、中序遍历(In-order Traversal)和后序遍历(Post-order Traversal)是二叉树的三种基本遍历方式。

遍历规则:

  • 前序遍历,按照以下顺序访问节点:根节点、左子树、右子树。
  • 中序遍历,按照以下顺序访问节点:左子树、根节点、右子树。
  • 后序遍历,按照以下顺序访问节点:左子树、右子树、根节点。

3.二叉查找树

二叉查找树(Binary Search Tree, BST)是一种特殊的二叉树,它具有以下性质:

  1. 每个节点都有一个键值(key)。
  2. 对于每个节点,其左子树中的所有节点的键值都小于该节点的键值。
  3. 对于每个节点,其右子树中的所有节点的键值都大于该节点的键值。
  4. 左子树和右子树也分别是二叉查找树。
  5. 二叉查找树不允许出现键值相等的结点。

二叉查找树的主要操作包括插入、删除和遍历。

1.创建二叉查找树

class TreeNode:def __init__(self, key):self.key = keyself.left = Noneself.right = None

 参数说明:

  • key: 节点的键值。

  • left: 指向左子节点的指针。

  • right: 指向右子节点的指针。

2.创建二叉查找树

class BinarySearchTree:def __init__(self):self.root = None
  • root: 指向二叉搜索树的根节点。初始时为 None。

3.插入节点

插入操作的步骤:

  1. 如果树为空:直接将新节点作为根节点。

  2. 如果树不为空

    • 从根节点开始,根据新节点的键值与当前节点的键值的比较结果,决定向左子树还是右子树移动。

    • 如果新节点的键值小于当前节点的键值,如果当前节点没有左子树,则将新节点插入到当前节点的左子树,否则向左子树移动。

    • 如果新节点的键值大于当前节点的键值,如果当前节点没有右子树,则将新节点插入到当前节点的右子树,否则向右子树移动。

    • 重复上述步骤,直到找到一个空位置,将新节点插入到该位置。

def insert(self, key):if self.root is None:self.root = TreeNode(key)else:self._insert(self.root, key)def _insert(self, node, key):if key < node.key:if node.left is None:node.left = TreeNode(key)else:self._insert(node.left, key)elif key > node.key:if node.right is None:node.right = TreeNode(key)else:self._insert(node.right, key)
  • insert(key): 公开的插入方法。如果树为空,则创建一个新节点作为根节点;否则,调用 _insert 方法进行递归插入。

  • _insert(node, key): 递归插入方法。根据键值的大小,递归地在左子树或右子树中插入新节点。

4.查找节点 

def search(self, key):return self._search(self.root, key)def _search(self, node, key):if node is None or node.key == key:return nodeif key < node.key:return self._search(node.left, key)return self._search(node.right, key)

5.删除节点 

删除逻辑:

1.递归查找待删除节点

  • 如果待删除节点的键值小于当前节点的键值,递归地在左子树中查找并删除。

  • 如果待删除节点的键值大于当前节点的键值,递归地在右子树中查找并删除。

2.找到待删除节点

删除操作的步骤可以分为以下几种情况:

  1. 待删除节点是叶子节点(没有子节点):直接删除该节点。

  2. 待删除节点只有一个子节点:用其子节点替换该节点。

  3. 待删除节点有两个子节点:

    • 找到右子树中的最小节点(即后继节点)。

    • 用后继节点的键值替换待删除节点的键值。

    • 删除后继节点(后继节点要么是叶子节点,要么只有一个右子节点)。

    def _remove(self, node, key):# 如果树为空则返回Noneif node is None:return None# 判断指定的key和当前节点的key的大小 如果指定的key小于当前节点的key 则递归遍历左子树# 如果指定的key大于当前节点的key 则递归遍历右子树if key < node.key:node.left = self._remove(node.left, key)elif key > node.key:node.right = self._remove(node.right, key)# 如果指定key等于当前节点key# 1.当前节点没有子节点 直接删除 返回None# 2.当前节点有一个子节点#   1.有右子节点 用右子节点替换当前节点#   2.有左子节点 用左子节点替换当前节点# 3.当前节点有两个节点#   查找当前节点的右节点的最小值 找到最小值 用这个最小值来替代当前节点else:# 如果当前节点 左右子树都为空 则返回Noneif node.left is None and node.right is None:return None# 如果左子树为空 则返回右子树elif node.left is None:return node.right# 如果右子树为空 则返回左子树elif node.right is None:return node.left# 如果当前节点右两个子树 则查询当前节点右子树的左子树找到最小值节点# 将最小值替换到当前节点 将最小值节点递归删除else:temp = self._min_value_node(node.right)node.key = temp.key# 以当前节点的右子树节点为根节点 删除最小值节点node.right = self._remove(node.right,temp.key)return node# 查找当前节点的最小值 最小值在当前节点的左子树中def _min_value_node(self,node):current = nodewhile current.left is not None:current = current.leftreturn node

6.遍历

遍历规则:

前序遍历,按照以下顺序访问节点:根节点、左子树、右子树。

中序遍历,按照以下顺序访问节点:左子树、根节点、右子树。

后序遍历,按照以下顺序访问节点:左子树、右子树、根节点。

    # 中序遍历def inorder_search(self):result = []self._inorder_search(self.root,result)return resultdef _inorder_search(self,node,result):if node:self._inorder_search(node.left,result)result.append(node.key)self._inorder_search(node.right,result)# 前序遍历def preorder_search(self):result = []if self.root is None:return Noneself._preorder_search(self.root,result)return resultdef _preorder_search(self,node,result):if node:result.append(node.key)self._preorder_search(node.left, result)self._preorder_search(node.right, result)# 后序遍历def afterorder_search(self):result = []self._afterorder_search(self.root, result)return resultdef _afterorder_search(self, node, result):if node:self._afterorder_search(node.left, result)self._afterorder_search(node.right, result)result.append(node.key)

整个代码实现:


# 定义二叉查找树节点
class TreeNode:def __init__(self, key):self.key = keyself.left = Noneself.right = Noneclass BST:def __init__(self,):self.root = Nonedef insert(self, key):# 判断根节点是否为空 为空则将值赋给根节点if self.root is None:self.root = TreeNode(key)else:self._insert(self.root,key)def _insert(self, node, key):# 如果要插入的键值小于当前节点的键值# 则判断当前节点是否有左子树 没有则将新节点赋给当前节点的左子树# 有则继续向当前节点的左子树移动 递归插入if key < node.key:if node.left is None:node.left = TreeNode(key)else:# node.left表示当前节点的左子树节点self._insert(node.left,key)# 如果要插入的键值大于当前节点的键值# 则判断当前节点是否有右子树 没有则将新节点赋给当前节点的右子树# 有则继续向当前节点的右子树移动 递归插入else :if node.right is None:node.right = TreeNode(key)else:self._insert(node.right, key)# 中序遍历def inorder_search(self):result = []self._inorder_search(self.root,result)return resultdef _inorder_search(self,node,result):if node:self._inorder_search(node.left,result)result.append(node.key)self._inorder_search(node.right,result)# 前序遍历def preorder_search(self):result = []if self.root is None:return Noneself._preorder_search(self.root,result)return resultdef _preorder_search(self,node,result):if node:result.append(node.key)self._preorder_search(node.left, result)self._preorder_search(node.right, result)# 后序遍历def afterorder_search(self):result = []self._afterorder_search(self.root, result)return resultdef _afterorder_search(self, node, result):if node:self._afterorder_search(node.left, result)self._afterorder_search(node.right, result)result.append(node.key)def remove_bst(self, key):self.root = self._remove(self.root, key)def _remove(self, node, key):# 如果树为空则返回Noneif node is None:return None# 判断指定的key和当前节点的key的大小 如果指定的key小于当前节点的key 则递归遍历左子树# 如果指定的key大于当前节点的key 则递归遍历右子树if key < node.key:node.left = self._remove(node.left, key)elif key > node.key:node.right = self._remove(node.right, key)# 如果指定key等于当前节点key# 1.当前节点没有子节点 直接删除 返回None# 2.当前节点有一个子节点#   1.有右子节点 用右子节点替换当前节点#   2.有左子节点 用左子节点替换当前节点# 3.当前节点有两个节点#   查找当前节点的右节点的最小值 找到最小值 用这个最小值来替代当前节点else:# 如果当前节点 左右子树都为空 则返回Noneif node.left is None and node.right is None:return None# 如果左子树为空 则返回右子树elif node.left is None:return node.right# 如果右子树为空 则返回左子树elif node.right is None:return node.left# 如果当前节点右两个子树 则查询当前节点右子树的左子树找到最小值节点# 将最小值替换到当前节点 将最小值节点递归删除else:temp = self._min_value_node(node.right)node.key = temp.key# 以当前节点的右子树节点为根节点 删除最小值节点node.right = self._remove(node.right,temp.key)return node# 查找当前节点的最小值 最小值在当前节点的左子树中def _min_value_node(self,node):current = nodewhile current.left is not None:current = current.leftreturn nodeif __name__ == '__main__':bst = BST()bst.insert(3)bst.insert(1)bst.insert(2)bst.insert(5)bst.insert(4)# result = bst.inorder_search()# result = bst.preorder_search()result = bst.afterorder_search()print(result)

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/58403.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenSSL

OpenSSL 概述 OpenSSL 是一个开源的、安全传输协议实现工具&#xff0c;广泛应用于数据加密与解密、证书生成与管理以及其他安全性相关的任务。在现代网络安全中&#xff0c;OpenSSL 被用于构建和维护 SSL/TLS 通信&#xff0c;确保数据在传输过程中的机密性和完整性。 简单来…

「C/C++」C/C++预处理 之 X宏(X Macro)

✨博客主页何曾参静谧的博客&#x1f4cc;文章专栏「C/C」C/C程序设计&#x1f4da;全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…

WPF+MVVM案例实战(四)- 自定义GroupBox边框样式实现

文章目录 1、项目准备2、功能实现1、EnviromentModel.cs 代码2、GroubBoxViewModel.cs 代码实现3、ViewModelLocator.cs 依赖注入4、GroubBoxWindow.xaml 样式布局5、数据绑定3、效果展示4、资源获取1、项目准备 打开项目 Wpf_Examples,新建 GroubBoxWindow.xaml 界面、Groub…

第十六章 Vue组件化开发及组件局部/全局注册

目录 一、组件化 1.1. 组件概述 1.2. 语法高亮插件 ​编辑 1.3. 组件内部组成 1.4. 让组件支持 less 1.5. 组件注册的两种方式 二、局部注册 2.1. 使用描述 2.2. 脚手架工程变动的核心代码 2.2.1. 工程结构图 2.2.2. App.vue 2.2.3. WzxHeader.vue 2.2.4. WzxMain…

excel斜线表头

检验数据验证对象 鼠标放在检验数据 验证对象中间&#xff0c;altenter 之后空格 选中格子&#xff0c;右键单元格格式&#xff0c; 完成 如果是需要多分割&#xff0c;操作一样&#xff0c;在画斜线的时候会有区别&#xff0c;在插入里面用直线画斜线即可 在表格插入的时…

【python】OpenCV—Connected Components

文章目录 1、任务描述2、代码实现3、完整代码4、结果展示5、涉及到的库函数6、参考 1、任务描述 基于 python opencv 的连通分量标记和分析函数&#xff0c;分割车牌中的数字、号码、分隔符 cv2.connectedComponentscv2.connectedComponentsWithStatscv2.connectedComponents…

日期选择简化版今日、本周、本月、本季度、本年

function 未来之窗_时间_现在() {let date new Date(),year date.getFullYear(), //获取完整的年份(4位)month date.getMonth() 1, //获取当前月份(0-11,0代表1月)strDate date.getDate() // 获取当前日(1-31),小时 date.getHours(),分钟 date.getMinutes();if (month &…

基于安卓Android的健康饮食系统APP(源码+文档+部署+讲解)

&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 会持续一直更新下去 有问必答 一键收藏关注不迷路 源码获取&#xff1a;https://pan.baidu.com/s/1aRpOv3f2sdtVYOogQjb8jg?pwdjf1d 提取码: jf1d &#…

【Unity基础】初识UI Toolkit - 编辑器UI

&#xff08;本文所需图片在文章上面的资源中&#xff0c;点击“立即下载”。&#xff09; 本文介绍了如何通过UI工具包&#xff08;UI Toolkit&#xff09;来创建一个编辑器UI。 一、创建项目 1. 打开Unity创建一个空项目&#xff08;任意模板&#xff09;&#xff0c;这里我…

【网络】传输层协议TCP

目录 四位首部长度 序号 捎带应答 标记位 超时重传机制 连接管理机制&#xff08;RST标记位&#xff09; 三次握手及四次挥手的原因 TCP的全称是传输控制协议&#xff08;Transmission Control Protocol&#xff09;&#xff0c;也就是说&#xff0c;对于放到TCP发送缓冲…

docker基础篇(尚硅谷)

学习链接 docker1️⃣基础篇&#xff08;零基小白&#xff09; - 语雀文档 (即本篇) Docker与微服务实战&#xff08;基础篇&#xff09; Docker与微服务实战&#xff08;高级篇&#xff09;- 【上】 Docker与微服务实战&#xff08;高级篇&#xff09;- 【下】 文章目录 学习…

Spark RDD

概念 RDD是一种抽象&#xff0c;是Spark对于分布式数据集的抽象&#xff0c;它用于囊括所有内存中和磁盘中的分布式数据实体 RDD 与 数组对比 对比项数组RDD概念类型数据结构实体数据模型抽象数据跨度单机进程内跨进程、跨计算节点数据构成数组元素数据分片(Partitions)数据…

OmicsTools软件和R语言分析环境安装配置答疑汇总最新版

OmicsTools软件和R语言分析环境安装配置答疑汇总 前言提示 我开发了一款本地电脑无限使用的零代码生信数据分析作图神器电脑软件OmicsTools&#xff0c;欢迎大家使用进行生物医学科研数据分析和作图&#xff0c;不需要学编程写代码&#xff0c;分析次数没有限制&#xff0c;可…

java web调试时清理当前网址的缓存

java web调试时清理当前网址的缓存 背景 开发后端接口的时候&#xff0c;出现页面已经重新部署启动。但页面报错404的问题。询问前端同学后&#xff0c;发现是因为没有清理页面缓存导致的。特别在此记录。 清理页面缓存 操作方式 chrome浏览器 F12 > 应用 > 存储 &g…

分布式 ID 生成策略(二)

在上一篇文章&#xff0c;分布式 ID 生成策略&#xff08;一&#xff09;&#xff0c;我们讨论了基于数据库的 ID 池策略&#xff0c;今天来看另一种实现&#xff0c;基于雪花算法的分布式 ID 生成策略。 如图所示&#xff0c;我们用 41 位时间戳 12 位机器 ID 10 位序列号&a…

解决edge浏览器无法同步问题

有时候电脑没带&#xff0c;但是浏览器没有同步很烦恼。chrome浏览器的同步很及时在多设备之间能很好使用。但是edge浏览器同步没反应。 在这里插入图片描述 解决方法&#xff1a; 一、进入edge浏览器点击图像会显示未同步。点击“管理个人资料”&#xff0c;进入后点击同步&…

【机器学习】14. 集成学习 ensemble: bagging, boosting, 随机森林 random forest

集成学习 ensemble: bagging, boosting, 随机森林 random forest 1. Ensemble 整体认知2. 使用Ensemble的原因3. 构建Ensemble 的方法4. Bagging&#xff08;bootstrap aggregation&#xff09;特点 5. BoostingAdaBoost整体算法思路 6. 比较7. 随机森林 1. Ensemble 整体认知 …

记录一次更新idea

一、官网下载安装包&#xff0c;拿所需版本 二、链接下载&#xff0c; 逐行仔细读readme.txt 三、执行script(unstall<->install)vbs、-javaagent:更改时记得

低代码平台如何通过AI赋能,实现更智能的业务自动化?

引言 随着数字化转型的加速推进&#xff0c;企业在日常运营中面临的业务复杂性与日俱增。如何快速响应市场需求&#xff0c;优化流程&#xff0c;并降低开发成本&#xff0c;成为各行业共同关注的核心问题。低代码平台作为一种能够快速构建应用程序的工具&#xff0c;因其可视化…

实现企业微信打卡月报与简道云的高效集成

实现企业微信打卡月报与简道云的高效集成 企业微信打卡月报同步到简道云 在企业管理中&#xff0c;员工的考勤数据是至关重要的一环。为了实现高效的数据管理和分析&#xff0c;我们需要将企业微信的打卡月报数据集成到简道云平台。本文将分享一个具体的技术案例&#xff0c;展…