Python OpenCV精讲系列 - 目标检测与识别深入理解(二十)

在这里插入图片描述

💖💖⚡️⚡️专栏:Python OpenCV精讲⚡️⚡️💖💖
本专栏聚焦于Python结合OpenCV库进行计算机视觉开发的专业教程。通过系统化的课程设计,从基础概念入手,逐步深入到图像处理、特征检测、物体识别等多个领域。适合希望在计算机视觉方向上建立坚实基础的技术人员及研究者。每一课不仅包含理论讲解,更有实战代码示例,助力读者快速将所学应用于实际项目中,提升解决复杂视觉问题的能力。无论是入门者还是寻求技能进阶的开发者,都将在此收获满满的知识与实践经验。

引言

目标检测是计算机视觉领域的一个核心问题,它涉及识别图像或视频中的物体,并确定其位置和大小。OpenCV(Open Source Computer Vision Library)是一个功能强大的开源计算机视觉库,支持多种目标检测算法和技术。本文将详细介绍几种流行的目标检测方法,并提供具体的实现细节。

目标检测技术概览

目标检测通常涉及以下几个步骤:

  1. 特征提取:从图像中提取有用的特征。
  2. 候选区域生成:确定可能包含目标的图像区域。
  3. 分类:判断每个候选区域是否包含目标。
  4. 定位:确定目标在图像中的精确位置。

OpenCV提供了多种方法来完成这些任务,包括传统的方法(如Haar级联分类器)以及基于深度学习的方法(如YOLO、SSD等)。

传统目标检测方法

Haar特征与级联分类器

1. Haar特征简介

Haar特征是一种简单的图像特征,用于检测局部图像结构的变化。它由一组简单的黑色和白色矩形组成,用于计算图像中不同区域之间的平均像素强度差异。

2. Haar级联分类器的工作原理
  • 训练过程:使用大量的正样本(包含目标的图像)和负样本(不包含目标的图像),通过AdaBoost算法训练出一系列弱分类器,并组合成一个强分类器。
  • 检测过程:使用训练好的级联分类器来扫描图像中的每一个位置,以检测目标的存在与否。
3. 使用Haar级联分类器进行目标检测
import cv2# 加载预先训练好的分类器
cascade_classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')# 读取图像
image = cv2.imread('path/to/your/image.jpg')# 转换为灰度图
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 检测对象
objects = cascade_classifier.detectMultiScale(gray_image,scaleFactor=1.1,minNeighbors=5,minSize=(30, 30),flags=cv2.CASCADE_SCALE_IMAGE
)# 绘制矩形框
for (x, y, w, h) in objects:cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 显示结果
cv2.imshow('Detected Objects', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

HOG特征与SVM分类器

1. HOG特征简介

HOG(Histogram of Oriented Gradients)特征是从图像中提取的一种特征向量,用于捕捉图像中局部像素强度变化的方向和幅度。

2. HOG+SVM的工作原理
  • 训练过程:使用HOG特征从训练图像中提取特征向量,然后使用SVM(Support Vector Machine)训练分类器。
  • 检测过程:对于新的图像,使用相同的HOG特征提取方法,然后使用训练好的SVM分类器来预测目标是否存在。
3. 使用HOG+SVM进行目标检测
import cv2
from skimage.feature import hog
from sklearn.svm import LinearSVC
from sklearn.externals import joblib# 加载训练好的SVM模型
svm_model = joblib.load('hog_svm_model.pkl')# 读取图像
image = cv2.imread('path/to/your/image.jpg')# 转换为灰度图
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 提取HOG特征
features = hog(gray_image, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=False, multichannel=False)# 预测
prediction = svm_model.predict(features.reshape(1, -1))if prediction == 1:# 绘制矩形框cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 显示结果
cv2.imshow('Detected Objects', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

基于深度学习的目标检测方法

YOLO(You Only Look Once)

1. YOLO模型介绍

YOLO是一种实时目标检测系统,它通过单次图像通过神经网络来预测边界框及其类别概率。

2. YOLO的工作原理
  • 网络结构:YOLO采用卷积神经网络(CNN)架构,通过单个前向传递来同时预测边界框的位置和类别。
  • 损失函数:结合了边界框坐标回归损失和类别预测损失。
3. 使用YOLO进行目标检测
import cv2
import numpy as np# 加载预训练的YOLO模型
net = cv2.dnn.readNetFromDarknet('yolov3.cfg', 'yolov3.weights')# 加载类别标签
with open('coco.names', 'r') as f:classes = [line.strip() for line in f.readlines()]# 读取图像
image = cv2.imread('path/to/your/image.jpg')# 获取图像的尺寸
height, width = image.shape[:2]# 创建blob
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False)# 设置输入
net.setInput(blob)# 获取模型的输出层名称
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]# 运行模型
outputs = net.forward(output_layers)# 处理输出
class_ids = []
confidences = []
boxes = []for output in outputs:for detection in output:scores = detection[5:]class_id = np.argmax(scores)confidence = scores[class_id]if confidence > 0.5:center_x, center_y, box_width, box_height = (detection[0:4] * np.array([width, height, width, height])).astype('int')x = int(center_x - (box_width / 2))y = int(center_y - (box_height / 2))boxes.append([x, y, box_width, box_height])confidences.append(float(confidence))class_ids.append(class_id)# 应用非极大值抑制去除重复的检测框
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)# 绘制矩形框
for i in indices:i = i[0]box = boxes[i]x, y, w, h = box# 绘制矩形框cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)label = f"{classes[class_ids[i]]}: {confidences[i]:.2f}"cv2.putText(image, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 显示结果
cv2.imshow('Detected Objects', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

SSD(Single Shot MultiBox Detector)

1. SSD模型介绍

SSD是一种高效的目标检测模型,它在单次前向传递中就能完成多尺度的检测任务。

2. SSD的工作原理
  • 网络结构:SSD使用多个不同大小的特征图来检测不同尺度的目标。
  • 锚点框(Anchor Boxes):在每个特征图的不同位置上设置多个不同比例和尺寸的框,以覆盖各种大小的目标。
3. 使用SSD进行目标检测
import cv2# 加载预训练的SSD模型
net = cv2.dnn.readNetFromCaffe('MobileNetSSD_deploy.prototxt.txt', 'MobileNetSSD_deploy.caffemodel')# 读取图像
image = cv2.imread('path/to/your/image.jpg')# 获取图像的尺寸
height, width = image.shape[:2]# 创建blob
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5)# 设置输入
net.setInput(blob)# 运行模型
detections = net.forward()# 处理输出
for i in range(detections.shape[2]):confidence = detections[0, 0, i, 2]if confidence > 0.5:idx = int(detections[0, 0, i, 1])box = detections[0, 0, i, 3:7] * np.array([width, height, width, height])(startX, startY, endX, endY) = box.astype("int")# 绘制矩形框cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 2)label = f"{CLASSES[idx]}: {confidence:.2f}"cv2.putText(image, label, (startX, startY - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 显示结果
cv2.imshow('Detected Objects', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

总结

本文详细介绍了使用OpenCV进行目标检测的方法,包括传统的Haar级联分类器和HOG+SVM方法,以及基于深度学习的YOLO和SSD方法。通过上述代码示例,您可以根据自己的需求选择合适的方法来实现目标检测。希望本文能为您提供有价值的信息,并帮助您更好地理解和应用OpenCV进行目标检测。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/56114.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【QT】常用控件(一)

个人主页~ 常用控件 一、控件是什么二、QWidget核心属性1、enabled2、geometry3、windowTitle4、windowIcon5、windowOpacity6、cursor7、font8、toolTip9、focusPolicy10、styleSheet 一、控件是什么 ui设计界面左边的这些都叫控件,除了这些以外,QT还允…

竹壳天气时钟(二)第二阶段任务已完成

一、简介 准备用基于esp8266的nodemcu开发板做一个天气时钟。 一步一步记录代码编写过程。 竹壳天气时钟 Bamboo shell weather clock 使用基于esp8266的NodeMCU制作。 计划用竹子做最后成品的外壳,所以才有了这个名称。 第一阶段任务: 1.开启混合模式&…

2025推荐选题|基于MVC的农业病虫害防治平台的设计与实现

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,…

Golang | Leetcode Golang题解之第477题汉明距离总和

题目&#xff1a; 题解&#xff1a; func totalHammingDistance(nums []int) (ans int) {n : len(nums)for i : 0; i < 30; i {c : 0for _, val : range nums {c val >> i & 1}ans c * (n - c)}return }

tkinter库的应用小示例:文本编辑器

tkinter库的应用小示例&#xff1a;文本编辑器 要 求&#xff1a; 创建一个文本编辑器&#xff0c;功能包括&#xff0c;创建、打开、编辑、保存文件。一个Button小组件&#xff0c;命名为btn_open,用于打开要编辑的文件&#xff0c;一个Button小组件&#xff0c;命名为btn_s…

【Ubuntu】“Linux版PhotoShop”绘图软件的安装和汉化

【Ubuntu】“Linux版PhotoShop”绘图软件的安装和汉化 零、前言 最近换了Linux系统&#xff0c;但是写教程做PPT的时候还是得用到绘图软件&#xff0c;上网一查&#xff0c;总结对比之后发现Krita比较好用&#xff0c;故此讲解一下如何安装和汉化Krita。 壹、安装 安装很简…

Unity中搜索不到XR Interaction Toolkit包解决方法

问题&#xff1a; 针对Unity版本2020.3在中PackageManager可能搜素不到XR Interaction Toolkit包 在Package Manager中未显示XR Interaction Toolkit包 解决方法&#xff1a; Package manager左上角&#xff0c;点加号&#xff0c;选择 Add package from git URL..&#xff0c;…

Mysql(2)—SQL语法详解(通俗易懂)

一、关于SQL 1.1 简介 SQL&#xff08;Structured Query Language&#xff0c;结构化查询语言&#xff09;是一种用于管理关系型数据库的标准编程语言。它主要用于数据的查询、插入、更新和删除等操作。SQL最初在1970年代由IBM的研究人员开发&#xff0c;旨在处理关系数据模型…

Pytorch基础:设置随机种子

相关阅读 Pytorch基础https://blog.csdn.net/weixin_45791458/category_12457644.html?spm1001.2014.3001.5482 有时候&#xff0c;如果需要代码在多个运行中具有可重复性&#xff0c;可以通过以下方式来设置随机种子&#xff1a; import torch import numpy as np import r…

qt+opengl 实现纹理贴图,平移旋转,绘制三角形,方形

1 首先qt 已经封装了opengl&#xff0c;那么我们就可以直接用了&#xff0c;这里面有三个函数需要继承 virtual void initializeGL() override; virtual void resizeGL(int w,int h) override; virtual void paintGL() override; 这三个函数是实现opengl的重要函数。 2 我们…

E: Unable to locate package:无法定位包的完美解决方法 ️

博主 默语带您 Go to New World. ✍ 个人主页—— 默语 的博客&#x1f466;&#x1f3fb; 《java 面试题大全》 《java 专栏》 &#x1f369;惟余辈才疏学浅&#xff0c;临摹之作或有不妥之处&#xff0c;还请读者海涵指正。☕&#x1f36d; 《MYSQL从入门到精通》数据库是开…

LabVIEW提高开发效率技巧----点阵图(XY Graph)

在LabVIEW开发中&#xff0c;点阵图&#xff08;XY Graph&#xff09; 是一种强大的工具&#xff0c;尤其适用于需要实时展示大量数据的场景。通过使用点阵图&#xff0c;开发人员能够将实时数据可视化&#xff0c;帮助用户更直观地分析数据变化。 1. 点阵图的优势 点阵图&…

树莓派应用--AI项目实战篇来啦-17.YOLOv8目标检测-安全帽检测

1. YOLOv8介绍 YOLOv8是Ultralytics公司2023年推出的Yolo系列目标检测算法&#xff0c;可以用于图像分类、物体检测和实例分割等任务。YOLOv8作为YOLO系列算法的最新成员&#xff0c;在损失函数、Anchor机制、样本分配策略等方面进行了全面优化和创新。这些改进不仅提高了模型的…

长芯微LSPGD1系列带气嘴DIP8封装集成表压传感器完全替代松下ADP51B62替代ADP51B62,成本更低!

描述 LSPGD1是长芯微针对家电医疗等市场推出的经过校准的表压传感器系列产品。该系列产品采用高性能信号调理芯片对MEMS压阻芯体输出进行温度和压力的校准和补偿&#xff0c;保证性能和可靠性的同时对封装进行了集成&#xff0c;易于使用。LSPGD1系列集成压力传感器可选量程为…

Java多线程之死锁(死锁产生条件、手写简单死锁程序、破坏死锁)(面试常有)

目录 一、死锁。 &#xff08;1&#xff09;实际生活"死锁"情景。 &#xff08;2&#xff09;程序中举例。 &#xff08;3&#xff09;死锁产生必要的条件。 <1> 互斥使用。 <2> 不可抢占。 <3> 请求和保持。 <4> 循环等待。 &#xff08;4&…

iOS 14 自定义画中画悬浮窗 Custom AVPictureInPictureController 实现方案

iOS 14&#xff0c;基于 AVPictureInPictureController&#xff0c;实现自定义画中画&#xff0c;涵盖所有功能与难点。 市面上的各种悬浮钟和提词器的原理都是基于此。 Demo源码在文末。 使用 iOS 画中画的要求&#xff1a; 真机&#xff0c;不能使用模拟器&#xff1b;iO…

starrocks-删除表字段

1、背景 之前做了个大宽表&#xff0c;将近100个字段&#xff0c;但是后来发现很多字段在实际生产上都没有用到&#xff0c;并且随着数据量的增加&#xff0c;给集群的存储以及消费任务的解析带来了比较大的压力。所以决定对字段做删除处理。 当前的表是使用routine load任务从…

hadoop全分布式搭建(三台虚拟机,一个主节点,两个从节点)

根据尚硅谷哔哩哔哩视频搭建&#xff1a;bilibili.com/video/BV1Qp4y1n7EN/ 安装虚拟机教程可参考&#xff1a;VMware虚拟机 安装 Centos7(linux)&#xff08;新手超详细教程&#xff09;_vmware安装centos7教程-CSDN博客 集群配置如下&#xff1a; 一、先配置一台虚拟机hadoo…

【计算机网络 - 基础问题】每日 3 题(三十八)

✍个人博客&#xff1a;https://blog.csdn.net/Newin2020?typeblog &#x1f4e3;专栏地址&#xff1a;http://t.csdnimg.cn/fYaBd &#x1f4da;专栏简介&#xff1a;在这个专栏中&#xff0c;我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话&#xff0c;欢迎点赞…

【华为HCIP实战课程七】OSPF邻居关系排错MTU问题,网络工程师

一、MTU MUT默认1500,最大传输单元,一致性检测 [R3-GigabitEthernet0/0/1]mtu 1503//更改R3的MTU为1503 查看R3和SW1之间的OSPF邻居关系正常: 默认华为设备没有开启MTU一致性检测! [R3-GigabitEthernet0/0/1]ospf mtu-enable //手动开启MTU检测 [SW1-Vlanif30]ospf mtu…