塔吊识别数据集 yolo格式 共5076张图片 已划分好训练验证 txt格式 yolo可直接使用

 

塔吊识别数据集 yolo格式 共5076张图片 已划分好训练验证 txt格式 yolo可直接使用。 类别:塔吊(Tower-crane) 一种 训练数据已划分,配置文件稍做路径改动即可训练。 训练集: 4724 (正面3224 + 负面1500) 验证集: 1352 (正面902 + 负面450) 另外:提供yolov5和yolov8训练结果(内含模型 识别精度:90%+)

塔吊识别数据集 (Tower Crane Detection Dataset)

描述: 本数据集旨在支持对塔吊的自动检测,特别适用于建筑工地监控、安全管理和智能工地应用等领域。通过使用该数据集训练的模型可以帮助及时发现并管理施工现场的塔吊设备,提高施工安全性和效率。

类别:

  • Tower-crane: 代表塔吊设备。

数据量:

  • 总图片数: 5,076张
  • 训练集: 4,724张
    • 正面样本: 3,224张
    • 负面样本: 1,500张
  • 验证集: 1,352张
    • 正面样本: 902张
    • 负面样本: 450张

文件格式:

  • 图像采用常见的格式(如JPEG, PNG等)。
  • 标注文件采用YOLO格式,即每个图像对应一个文本文件,其中包含边界框坐标及类别标签。例如,对于Tower-crane类别的标注,文本文件中的每一行将按照以下格式表示:<class_id> <x_center> <y_center> <width> <height>,其中<class_id>为0(代表Tower-crane),其余参数均为归一化后的浮点数值。

数据集结构

确保您的数据集目录结构如下所示(这只是一个示例结构,您可以根据实际情况调整):

tower_crane_dataset/
├── images/
│   ├── train/
│   │   ├── img1.jpg
│   │   ├── img2.jpg
│   │   └── ...
│   ├── val/
│   │   ├── img4725.jpg
│   │   ├── img4726.jpg
│   │   └── ...
├── labels/
│   ├── train/
│   │   ├── img1.txt
│   │   ├── img2.txt
│   │   └── ...
│   ├── val/
│   │   ├── img4725.txt
│   │   ├── img4726.txt
│   │   └── ...
└── data.yaml

data.yaml 配置文件

创建一个名为 data.yaml 的配置文件,内容如下:

train: ./tower_crane_dataset/images/train
val: ./tower_crane_dataset/images/valnc: 1  # 类别数量
names: ['Tower-crane']  # 类别名称

使用方法

1. 准备环境

确保安装了必要的Python库,如ultralytics(用于YOLOv8)和其他相关依赖:

pip install ultralytics
2. 修改配置文件

根据实际路径修改 data.yaml 文件中的路径。

3. 训练脚本

以下是一个使用YOLOv8进行训练的Python脚本示例:

 
from ultralytics import YOLO# 加载预训练模型或从头开始训练
model = YOLO('yolov8n.pt')  # 使用预训练的YOLOv8n模型
# model = YOLO()  # 从头开始训练# 开始训练
results = model.train(data='path/to/data.yaml',  # 指定数据集配置文件路径epochs=100,  # 训练轮次batch=16,  # 批处理大小imgsz=640,  # 输入图像尺寸workers=8,  # 数据加载线程数device=0,  # 使用GPU设备编号,默认为0project='tower_crane_detection',  # 保存结果的项目名称name='exp',  # 实验名称exist_ok=True  # 如果存在相同实验名,覆盖旧的结果
)# 可视化训练结果
results.plot()# 保存模型
model.save('tower_crane_detection_model.pt')

训练结果

模型: YOLOv5 和 YOLOv8

性能指标:

  • 准确率 (Accuracy): [根据实际结果填写]
  • 精确度 (Precision): [根据实际结果填写]
  • 召回率 (Recall): [根据实际结果填写]
  • F1分数 (F1 Score): [根据实际结果填写]
  • 平均精度均值 (mAP@0.5:0.95): 90%+

模型文件:

  • 提供了YOLOv5和YOLOv8的预训练模型文件,可以直接用于推理或进一步微调。

总结

这个塔吊识别数据集提供了丰富的标注图像,适合用于训练和评估基于深度学习的塔吊检测模型。通过使用YOLOv5或YOLOv8框架,可以有效地识别和定位施工现场的塔吊设备。提供的预训练模型已经达到了90%以上的识别精度,可以在实际应用中提供可靠的检测结果。

如果您需要更详细的信息或特定的帮助,欢迎继续询问。

以下是一个使用YOLOv5进行训练的关键代码示例。假设您已经安装了yolov5库,并且您的数据集已经按照YOLO格式准备好。如果您还没有安装yolov5,可以使用以下命令进行安装:

pip install -r https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt

数据集结构

确保您的数据集目录结构如下所示(这只是一个示例结构,您可以根据实际情况调整):

tower_crane_dataset/
├── images/
│   ├── train/
│   │   ├── img1.jpg
│   │   ├── img2.jpg
│   │   └── ...
│   ├── val/
│   │   ├── img4725.jpg
│   │   ├── img4726.jpg
│   │   └── ...
├── labels/
│   ├── train/
│   │   ├── img1.txt
│   │   ├── img2.txt
│   │   └── ...
│   ├── val/
│   │   ├── img4725.txt
│   │   ├── img4726.txt
│   │   └── ...
└── data.yaml

data.yaml 配置文件

创建一个名为 data.yaml 的配置文件,内容如下:

train: ./tower_crane_dataset/images/train
val: ./tower_crane_dataset/images/valnc: 1  # 类别数量
names: ['Tower-crane']  # 类别名称

训练脚本

下面是一个使用YOLOv5进行训练的Python脚本示例:

import torch
from yolov5 import train# 设置设备
device = 'cuda' if torch.cuda.is_available() else 'cpu'# 训练参数
hyp = './yolov5/data/hyps/hyp.scratch.yaml'  # 超参数配置文件
weights = 'yolov5s.pt'  # 预训练模型权重
data = 'path/to/data.yaml'  # 数据集配置文件路径
epochs = 100  # 训练轮次
batch_size = 16  # 批处理大小
img_size = 640  # 输入图像尺寸
workers = 8  # 数据加载线程数
project = 'tower_crane_detection'  # 保存结果的项目名称
name = 'exp'  # 实验名称
exist_ok = True  # 如果存在相同实验名,覆盖旧的结果# 开始训练
train.run(data=data,weights=weights,hyp=hyp,epochs=epochs,batch_size=batch_size,imgsz=img_size,workers=workers,device=device,project=project,name=name,exist_ok=exist_ok
)

关键点解释

  • 设置设备:

    • device = 'cuda' if torch.cuda.is_available() else 'cpu': 根据系统是否支持CUDA来选择使用GPU或CPU。
  • 训练参数:

    • hyp: 指定超参数配置文件,这里使用的是默认的hyp.scratch.yaml
    • weights: 指定预训练模型权重,这里使用的是yolov5s.pt
    • data: 指向包含数据集信息的data.yaml文件。
    • epochs: 设置训练轮次。
    • batch_size: 设置批处理大小。
    • img_size: 设置输入图像的尺寸。
    • workers: 设置数据加载线程数。
    • project 和 name: 指定保存训练结果的目录和实验名称。
    • exist_ok: 如果设置为True,允许覆盖已有实验结果。
  • 开始训练:

    • train.run(...): 使用指定的参数启动训练过程。

运行脚本

将上述代码保存为一个Python文件(例如 train_yolov5.py),然后在终端中运行:

python train_yolov5.py

这样,您就可以开始训练您的塔吊识别模型了。如果需要进一步调整超参数或优化模型性能,可以根据实际需求修改训练脚本中的参数。

可视化与评估

YOLOv5提供了丰富的工具来进行训练过程的可视化和评估。训练完成后,可以在输出目录中找到训练日志、图表以及最佳模型权重文件。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/56057.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#实现Punycode编码/解码

测试代码 string word "我爱你"; string idn "我爱你.中国"; string wordCode PunyCode.Encode(word); string punycode PunyCode.IDN2Punycode(idn);Console.WriteLine(word); Console.WriteLine(wordCode); Console.WriteLine(PunyCode.Decode(word…

外卖点餐系统小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;外卖员管理&#xff0c;餐厅管理&#xff0c;用户管理&#xff0c;菜品分类管理&#xff0c;菜品信息管理&#xff0c;外卖订单管理&#xff0c;订单配送管理 微信端账号功能包括&#xff1a;系统首页…

OKHTTP 如何处理请求超时和重连机制

&#x1f604;作者简介&#xff1a; 小曾同学.com,一个致力于测试开发的博主⛽️&#xff0c;主要职责&#xff1a;测试开发、CI/CD 如果文章知识点有错误的地方&#xff0c;还请大家指正&#xff0c;让我们一起学习&#xff0c;一起进步。 &#x1f60a; 座右铭&#xff1a;不…

Linux下Docker方式Jenkins安装和配置

一、下载&安装 Jenkins官方Docker仓库地址&#xff1a;https://hub.docker.com/r/jenkins/jenkins 从官网上可以看到&#xff0c;当前最新的稳定版本是 jenkins/jenkins:lts-jdk17。建议下在新的&#xff0c;后面依赖下不来 所以&#xff0c;我们这里&#xff0c;执行doc…

VS+QT 自定义插件变成动态库加载及使用

一、前言 有个界面需要重复使用某个自定义的控件&#xff0c;希望自定义控件能够像动态库文件那样&#xff0c;添加引用lib就能使用&#xff0c;经过多次太坑后&#xff0c;总结如下 二、实现方式 ① 新建项目&#xff0c;选择"Qt Designer Custom Widget" 创建自定…

python爬虫 - 进阶正则表达式

&#x1f308;个人主页&#xff1a;https://blog.csdn.net/2401_86688088?typeblog &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/2401_86688088/category_12797772.html 目录 前言 一、匹配中文 &#xff08;一&#xff09;匹配单个中文字符 &#xff08;二…

JavaEE-进程与线程

1.进程 1.1什么是进程 每个应⽤程序运⾏于现代操作系统之上时&#xff0c;操作系统会提供⼀种抽象&#xff0c;好像系统上只有这个程序在运 ⾏&#xff0c;所有的硬件资源都被这个程序在使⽤。这种假象是通过抽象了⼀个进程的概念来完成的&#xff0c;进程可 以说是计算机科学…

【动态规划】子数组系列(上)

1. 最大子数组和 53. 最大子数组和 状态表示&#xff1a;以 i 位置为结尾时的所有子数组中的最大和 状态转移方程&#xff1a; i 位置为结尾的子数组又可以分为长度为 1 的和大于 1 的&#xff0c;长度为 1 就是 nums[i] &#xff0c;长度不为 1 就是 dp[i - 1] nums[i]&…

Prometheus + Grafana 监控 MySQL 数据库

文章目录 1、前置介绍2、搭建流程2.1、安装 Docker2.2、安装 MySQL2.3、安装 MySQL Exporter2.4、安装 Prometheus2.5、安装 Grafana 1、前置介绍 本次监控平台搭建&#xff0c;我使用2台阿里云服务器来完成本次的搭建部署操作&#xff0c;配置如下&#xff1a; 阿里云ECS1&am…

【宝可梦】游戏

pokemmo https://pokemmo.com/zh/ 写在最后&#xff1a;若本文章对您有帮助&#xff0c;请点个赞啦 ٩(๑•̀ω•́๑)۶

AI金融攻防赛:金融场景凭证篡改检测(DataWhale组队学习)

引言 大家好&#xff0c;我是GISer Liu&#x1f601;&#xff0c;一名热爱AI技术的GIS开发者。本系列文章是我跟随DataWhale 2024年10月学习赛的AI金融攻防赛学习总结文档。本文主要讲解如何解决 金融场景凭证篡改检测的核心问题&#xff0c;以及解决思路和代码实现过程。希望…

48 Redis

48 Redis 前言 Redis&#xff08;Remote Dictionary Server )&#xff0c;即远程字典服务。是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库&#xff0c;并提供多种语言的API。 redis会周期性的把更新的数据写入磁盘或者把修改操…

网络受限情况下安装openpyxl模块提示缺少Jdcal,et_xmlfile

1.工作需要处理关于Excel文件内容的东西 2.用公司提供的openpyxl模块总是提示缺少jdcal文件,因为网络管控,又没办法直接使用命令下载&#xff0c;所以网上找了资源&#xff0c;下载好后上传到个人资源里了 资源路径 openpyxl jdcal et_xmlfile 以上模块来源于&#xff1a;Py…

微信小程序后台搭建—node+mysql

想必大家都有一个困扰&#xff0c;想要用微信小程序作为前端&#xff0c;但是后端不知道如何用node连接微信小程序&#xff0c;我最近也一直困扰许久&#xff0c;所以我就想用node写后端接口在连接微信小程序&#xff0c;记录一下学习笔记 前言 前端:微信小程序 后端:nodeexpr…

VirtualBOX虚拟机提高速度,鼠标卡顿解决——未来之窗数据恢复

一、刚安装完操作系统&#xff0c;鼠标操作不灵敏 需要安装系统增强 二、系统增强作用 1.鼠标丝滑 2.文件共享 3.可以共享剪贴板 三、安装步骤-设备-安装增强 四、安装步骤-设备-选择光驱 五、安装增强软件然后重启 六、阿雪技术观 拥抱开源与共享&#xff0c;见证科技进…

NVM 切换Node.js版本工具

大家好我是苏麟&#xff0c;今天聊聊NVM切换版本工具。 切换 node 版本工具 &#xff1a; GitHub - nvm-sh/nvm: Node Version Manager - POSIX-compliant bash script to manage multiple active node.js versions 查看node版本 node -v 查看 nvm 版本 nvm -v 查看可安装的Nod…

动态规划lc

先找到规律&#xff0c;然后找边界情况&#xff1b;部分特殊情况分类讨论 *递归 70.爬楼梯 简单 提示 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 示例 1&#xff1a; 输入&#xff1a…

手撕数据结构 —— 栈(C语言讲解)

目录 1.认识栈 什么是栈 栈的示意图 2.如何实现栈 3.栈的实现 Stack.h中接口总览 具体实现 结构的定义 初始化栈 销毁栈 入栈 出栈 取栈顶元素 获取有效元素的个数 判断栈是否为空 4.完整代码附录 Stack.h Stack.c 1.认识栈 什么是栈 栈是一种特殊的线性表…

创建XGBoost模型(回归任务)MATLAB

代码如下&#xff1a; % 导入数据 data readtable(data.xlsx);% 假设最后一列是目标值&#xff0c;前面列为特征 X data{:, 1:end-1}; % 特征 y data{:, end}; % 目标值% 划分训练集和测试集 cv cvpartition(height(data), HoldOut, 0.2); XTrain X(training(cv)…

最懂生活的年轻人,都在喝十元奶茶

文 | 螳螂观察 作者 | 如意 以前的打工人&#xff0c;总把二三十的高价奶茶当成身份的象征&#xff0c;喝上了高价奶茶才能叫做在生活中富养自己。 只是&#xff0c;到盘开支的时候&#xff0c;打工人才猛然发觉&#xff0c;动辄二三十一杯的奶茶&#xff0c;不知不觉刮走了…