数据结构-LRU缓存(C语言实现)

遇到困难,不必慌张,正是成长的时候,耐心一点!

目录

  • 前言
  • 一、题目介绍
  • 二、实现过程
    • 2.1 实现原理
    • 2.2 实现思路
      • 2.2.1 双向链表
      • 2.2.2 散列表
    • 2.3 代码实现
      • 2.3.1 结构定义
      • 2.3.2 双向链表操作实现
      • 2.3.3 实现散列表的操作
      • 2.3.4 内存释放代码
      • 2.3.5 题目代码实现
  • 总结

前言

本篇文章主要是为了记录实现LRU缓存的方法和思考的过程。

一、题目介绍

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;
如果不存在,则向缓存中插入该组 key-value 。
如果插入操作导致关键字数量超过 capacity ,则应该逐出最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:
输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示:
1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
最多调用 2 * 105 次 get 和 put

下面是本人的一些废话,不感兴趣可直接看实现过程

看完题目,看到函数 get 和 put 必须以 O(1) 的平均时间复杂度运行,第一反应是顺序存储的随机存取才可以实现O(1)的时间复杂度,也就是说一定会有一块连续的存储空间存储数据,且大小为capacity。可以把key对应连续的存储空间的下标,但是看到提示里面的key的范围超出了capacity的范围,那如何在让key在[0,capacity]循环呢?脑子直接想到了循环队列的取余法,因为最近用循环队列比较频繁。
但是,经过取余后,还是会造成出现重复的key,该怎们解决呢?突然想到数据结构里面的散列表的碰撞的处理,立马去看关于散列表的介绍,以前没学的东西,现在又冒出来找我了。
看了以后,觉得很神奇,原来取余法是散列函数的一种,并使用频繁的一种。然后又看了关于碰撞的处理,书上介绍两种,第一种叫开地址法,第二种方法叫拉链法。
解决了碰撞问题,那么如何实现最近最少使用,一想到这是关于链表的题目,慢慢想到了循环单链表,头插法实现最近使用,而尾结点一定是最少使用,也就是当缓存空间达到capacity时,需要删除的。但是写了一半代码,发现当访问结点为尾结点时,需要更改尾结点,也就是需要尾结点的前驱。我知道,在单链表中,寻找某个结点前驱时间复杂度是O(n),不符合题意,立马把代码删除。
经过思考,心情里变得比较烦躁,但又不想看题解,因为想着现在正是考验我的时候,想着这道题一定想要教会我什么。尝试让自己变得冷静,不断地翻开数据结构这本书,看到双向链表,哎,这不就是为了解决以O(1)时间复杂度访问某个结点前驱的问题嘛!为什么没有马上想到,是因为平时做的题目都是单链表,双向链表用的太少了…
以上问题都解决了后,刚开始使用开地址法的线性探查法解决碰撞时,发现最后几个测试用例超时了,但是,说明思路是对的,因为线性探访的最坏情况的时间复杂度就是O(n)。
然后改为使用了拉链法,写代码用的时间不多,调试用了很多时间,最终,在不放弃的情况下,终于找到了代码的某处错误。真是太不容易了,因为常规测试用例通过了,在一些复杂的测试用例没通过,又无法一步一步的调试,只能不断地阅读代码,最后发现是在某个很隐秘且常规测试用例很难覆盖的地方,我当场麻了…
所幸,最后还是一步一步的写出来了,还是非常开心的,感觉时间花的太值了!

二、实现过程

2.1 实现原理

实现原理:散列表+双向链表
散列表解决了key重复问题,并解决函数 get 和 put 必须以 O(1) 的平均时间复杂度运行的问题
双向链表解决了最近使用和最少使用的问题,头插法解决最近使用,尾结点解决了最少使用
结构图如图2.1所示:
在这里插入图片描述

图2.1 LRU原理图

2.2 实现思路

2.2.1 双向链表

为了方便双向链表的插入和删除操作,可以使用两个辅助结点,一个伪头部和一个伪尾部,实现了每个真实结点都有前驱和后继
在这里插入图片描述

图2.2.1 双向链表

2.2.2 散列表

这里主要想介绍解决碰撞问题的拉链法。
设散列表的大小为m,使用拉链法需要建立m条链表,所有散列地址相同的元素放在同一条链表中,如果某个地址中没有存放任何元素,则对应的链表为空链表。设关键码key,根据散列函数h计算出h(key),即可确定第h(key)条链表,然后在该链表进行插入和删除及检索操作。
在本题中,散列函数为取余法,散列表的大小为capacity
h ( k e y ) = k e y % c a p a c i t y h(key) = key \,\%\, capacity h(key)=key%capacity
在本题中, h a s h K e y = h ( k e y ) , h a s h V a l u e = h a s h T a b l e [ h a s h K e y ] hashKey = h(key), hashValue = hashTable[hashKey] hashKey=h(key),hashValue=hashTable[hashKey]
如下图所示
在这里插入图片描述

图2.2.1 散列表

2.3 代码实现

本篇文章的代码使用C语言实现

2.3.1 结构定义

//双向链表结点
struct DoubleNode
{int key;        //真实的keyint value;struct DoubleNode* llink;       //双向链表的前驱struct DoubleNode* rlink;      //双向链表的后继
};//双向链表类型
//为了方便操作,使用两个伪结点
struct DoubleList
{struct DoubleNode* dummyHead;    //双向链表的伪头部struct DoubleNode* dummyRear;    //双向链表的伪尾部  
};//哈希结点的定义
//相同hashKey构成的链表的结点类型
struct HashNode
{struct DoubleNode* address;         //指向双向链表的某个结点struct HashNode*   next;
};//使用双向链表
//保存双向链表的头结点
//散列函数       取余法 
//解决地址碰撞   拉链法   
typedef struct
{struct DoubleList* doubleList;      //双向链表struct HashNode**  hashTable;       //哈希表int capacity;                       //缓存空间大小int curCapacty;                     //已用空间
} LRUCache;

2.3.2 双向链表操作实现

//双向链表的操作
//初始化双向链表
void initDoubleList(struct DoubleList* doubleList)
{doubleList->dummyHead = (struct DoubleNode*)calloc(1, sizeof(struct DoubleNode));  //初始化双向链表的伪头部doubleList->dummyRear = (struct DoubleNode*)calloc(1, sizeof(struct DoubleNode));  //初始化双向链表的伪尾部//头和尾互连doubleList->dummyHead->rlink = doubleList->dummyRear;                              doubleList->dummyRear->llink = doubleList->dummyHead;
}//将某个结点向双向链表中的第一个结点前执行插入操作
void insertNodeToDoubleListFirst(struct DoubleList* doubleList, struct DoubleNode* node)
{node->rlink = doubleList->dummyHead->rlink;node->llink = doubleList->dummyHead;doubleList->dummyHead->rlink->llink = node;doubleList->dummyHead->rlink = node;
}//将node结点移动到双向链表的第一个结点
void moveNodeToHead(struct DoubleList* doubleList, struct DoubleNode* node)
{   //从双向链表中断开node->llink->rlink = node->rlink;node->rlink->llink = node->llink;//将断开的结点重新插入到双向链表的伪头部后insertNodeToDoubleListFirst(doubleList, node);
}

2.3.3 实现散列表的操作

//哈希表的操作
//散列函数
//取余法
int hashFunc(int key, int m)
{return key % m;
}//在hashTable查看对应的hashKey的结点是否指向已存在的key
struct HashNode* getHashNode(struct HashNode** hashTable, int hashKey, int key)
{for (struct HashNode* hashValue = hashTable[hashKey]; hashValue != NULL; hashValue = hashValue->next){if (hashValue->address->key == key){return hashValue;}}return NULL;
}//往哈希表插入一个HashNode(头插法)
void insertHashNodeToHashTable(struct HashNode** hashTable, int hashKey,struct HashNode* hnode)
{   hnode->next = hashTable[hashKey];hashTable[hashKey] = hnode; 
}//从哈希表hashTable[hashKey]->address == dnode的结点断开在之前的链表
struct HashNode* deleteHashNodeFromHashTable(struct HashNode** hashTable, int hashKey, struct DoubleNode* dnode)
{struct HashNode* pre_hashNode = hashTable[hashKey];struct HashNode* freeNode = NULL;if (pre_hashNode->address == dnode)   //如果第一个为删除结点,则将hashTable[hashKey] = pre_hashNode->next{freeNode = pre_hashNode;hashTable[hashKey] = pre_hashNode->next;}else                                //否则需要寻找address为dnode的前驱结点{while (pre_hashNode->next->address != dnode){pre_hashNode = pre_hashNode->next;}freeNode = pre_hashNode->next;pre_hashNode->next = pre_hashNode->next->next;}return freeNode;
}

2.3.4 内存释放代码

//释放hashTable的内存
void hashTableNodeListFree(struct HashNode** hashTable, int capacity)
{  for(int hashKey = 0; hashKey < capacity; hashKey++){//释放相同hashKey的链表结点内存for(struct HashNode* head = hashTable[hashKey]; head != NULL; NULL){struct HashNode* freeNode = head;head = head->next;free(freeNode);}}free(hashTable);
}//释放双向链表的内存
void doubleNodeListFree(struct DoubleList* doubleList)
{   //释放双向链表每一个数据结点空间for(struct DoubleNode* head = doubleList->dummyHead; head != NULL; NULL){struct DoubleNode* freeNode = head;head = head->rlink;free(freeNode);}//释放双向链表的头结点空间free(doubleList);
}

2.3.5 题目代码实现

LRUCache* lRUCacheCreate(int capacity)
{LRUCache* obj = (LRUCache*)calloc(1, sizeof(LRUCache));obj->capacity = capacity;obj->hashTable = (struct HashNode**)calloc(capacity, sizeof(struct HashNode*));obj->doubleList = (struct DoubleList*)calloc(1, sizeof(struct DoubleList));  //初始化双向链表initDoubleList(obj->doubleList);return obj;
}int lRUCacheGet(LRUCache* obj, int key)
{int hashKey = hashFunc(key, obj->capacity);struct HashNode* hashValue = getHashNode(obj->hashTable, hashKey, key);if(hashValue != NULL){moveNodeToHead(obj->doubleList, hashValue->address);return hashValue->address->value;}return -1;
}void lRUCachePut(LRUCache* obj, int key, int value)
{int hashKey = hashFunc(key, obj->capacity);//查看当前的hashKey是否存在//存在则修改valuestruct HashNode* hashValue = getHashNode(obj->hashTable, hashKey, key);if(hashValue != NULL){hashValue->address->value = value;moveNodeToHead(obj->doubleList, hashValue->address);return;}//当前的key对应的hashKey不存在//则将当前的key插入到hashTable中if (obj->curCapacty < obj->capacity)   //缓存空间未满  {   //新建一个双向链表的结点struct DoubleNode* dnode = (struct DoubleNode*)calloc(1, sizeof(struct DoubleNode));dnode->key = key;dnode->value = value;//新建一个HashNodestruct HashNode* hnode = (struct HashNode*)calloc(1, sizeof(struct HashNode));hnode->address = dnode;    //插入到哈希表insertHashNodeToHashTable(obj->hashTable, hashKey, hnode);//将dnode插入到双链表的头insertNodeToDoubleListFirst(obj->doubleList, dnode);obj->curCapacty++;}else    //缓存空间已满  重用旧的结点->需要切断旧结点以前的联系->重新赋值->新生{//逐出最近未使用的关键字,即双向链表的尾结点struct DoubleNode* dnode = obj->doubleList->dummyRear->llink;//重置dnode在hashTable的位置struct HashNode* hnode =  deleteHashNodeFromHashTable(obj->hashTable, hashFunc(dnode->key,obj->capacity), dnode);//将dnode重新赋值dnode->key    = key;dnode->value  = value;//使用原来的哈希结点,则 hnode->address = dnode 可省略insertHashNodeToHashTable(obj->hashTable, hashKey,hnode);moveNodeToHead(obj->doubleList, dnode);}
}void lRUCacheFree(LRUCache* obj)
{//先释放双向链表的内存doubleNodeListFree(obj->doubleList);//释放哈希表的内存hashTableNodeListFree(obj->hashTable, obj->capacity);//释放缓存的头结点内存free(obj);
}

总结

看到题目通过那瞬间,真的非常开心,但我知道,代码还有很多大优化的空间,希望能够持续不断地学习!
仅仅用这篇文章记录本人解题的过程,希望对读者有所帮助吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/55911.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java后端面试----某团一面

美团一面 1.介绍一下你的第一个项目 这个就不多说了&#xff0c;主要是根据自己的简历上面的项目进行一个简短的概括使用的技术栈和什么背景解决了什么问题等等。 2.线程安全的类有哪些&#xff0c;平时有使用过哪些&#xff0c;主要解决什么问题 在Java中线程安全的类比如…

vue使用table实现动态数据报表(行合并)

<template><div class"previewTable"><h2>***项目研发数据报告</h2><table id"previewTable" width"100%"><tr><th>项目名称</th><td colspan"6">{{ resultData.proName }}<…

【D3.js in Action 3 精译_030】3.5 给 D3 条形图加注图表标签(下):Krisztina Szűcs 人物专访 + 3.6 本章小结

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第一部分 D3.js 基础知识 第一章 D3.js 简介&#xff08;已完结&#xff09; 1.1 何为 D3.js&#xff1f;1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践&#xff08;上&#xff09;1.3 数据可…

一键将表格嵌入ppt作为附件!2个做ppt必知的技巧分享!

怎样把表格作为附件放入ppt&#xff1f; 众所周知&#xff0c;微软推出的Office套件包含了Powerpoint和Excel这两款软件&#xff0c;如果想在Powerpoint中插入表格&#xff0c;且表格数据量比较大&#xff0c;此时最好的呈现方式&#xff0c;是在Excel中来展示这些数据&#x…

【Unity学习笔记】解决疑似升级Win11或使用Unity6导致Unity旧版本无法打开的问题

【Unity学习笔记】解决疑似升级Win11或使用Unity6导致Unity旧版本无法打开的问题 一句话省流&#xff1a; 确保项目地址没有任何中文&#xff0c;重新申请个许可证&#xff0c;然后该咋就咋&#xff0c;完事。 ——————————————————————————————…

华为云应用侧Android测试APP

05.华为云应用侧Android测试APP 本APP在填写或修改部分参数后能够完成token获取&#xff0c;影子消息读取&#xff0c;命令下发。APP共包含三个界面&#xff1a;主界面获取token、影子消息获取界面、命令下发界面。 实现过程参见&#xff1a;华为云应用侧Android Studio开发-…

企业如何制定适合自己的专利布局策略

在竞争激烈的市场环境中&#xff0c;专利布局对于企业的发展和竞争优势的建立至关重要。以下将分要点解析企业如何制定适合自己的专利布局策略。 1、明确企业的发展战略和市场定位 企业首先需要深入了解自身的长期发展规划和短期业务目标。明确是要通过技术创新来开拓新市场&am…

微服务之间的相互调用的几种常见实现方式对比

目录 微服务之间的相互调用的几种实现方式 一、HTTP HTTP/RESTful API调用工作原理 二、RPC 设计理念与实现方式 协议与传输层 RPC远程调用工作原理 应用场景与性能考量 特点 三、Feign 设计理念与实现方式 协议与传输层 Feign调用的基本流程 Feign调用的工作原理…

python爬虫 - 深入requests模块

&#x1f308;个人主页&#xff1a;https://blog.csdn.net/2401_86688088?typeblog &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/2401_86688088/category_12797772.html 目录 前言 一、下载网络文件 &#xff08;一&#xff09;基本步骤 &#xff08;二&…

Windows下MYSQL8.0如何恢复root权限

误操作把root权限清掉导致数据库无法登录&#xff08;确实很难受&#xff09;&#xff0c;在网上找了很多方法&#xff0c;发现没有很行之有效的方法&#xff0c;在多方尝试终于找到了适合敏感宝宝体质的方法。 C:\Users\Administrator>mysql -u root -P3307 ERROR 1045 (2…

数据结构——遍历二叉树

目录 什么是遍历二叉树 根据遍历序列确定二叉树 例题&#xff08;根据先序中序以及后序中序求二叉树&#xff09; 遍历的算法实现 先序遍历 中序遍历 后序遍历 遍历算法的分析 二叉树的层次遍历 二叉树遍历算法的应用 二叉树的建立 复制二叉树 计算二叉树深度 计算二…

Redis 高可用方案

Redis 高可用性&#xff08;High Availability&#xff09;是指在 Redis 系统中实现持续的可用性&#xff0c;即使在发生硬件故障或其他意外情况下&#xff0c;系统仍能保持运行。 1 常用方案 为了实现 Redis 的高可用性&#xff0c;以下是几种常用方案&#xff1a; 1.1 使用…

小猿口算自动PK脚本

大家好&#xff0c;我是小黄。 近期&#xff0c;众多大学生炸鱼小猿口算APP,把一众小学生都快虐哭了&#xff0c;小黄听闻后&#xff0c;也跃跃欲试。对此小黄也参考网上的资料写了一个自动Pk的脚步。 首先大家需要安装一个pytorch环境过程中&#xff0c;如果小伙伴对此不熟悉的…

软考《信息系统运行管理员》- 4.3 信息系统软件运维的过程

4.3 信息系统软件运维的过程 文章目录 4.3 信息系统软件运维的过程日常运维日常运维的内容日常运行例行测试维护例行测试流程的关键点例行维护流程的关键点 定期测试维护 缺陷诊断与修复信息系统软件缺陷的概念信息系统软件缺陷的分类信息系统软件缺陷诊断与修复流程缺陷诊断与…

springboot kafka多数据源,通过配置动态加载发送者和消费者

前言 最近做项目&#xff0c;需要支持kafka多数据源&#xff0c;实际上我们也可以通过代码固定写死多套kafka集群逻辑&#xff0c;但是如果需要不修改代码扩展呢&#xff0c;因为kafka本身不处理额外逻辑&#xff0c;只是起到削峰&#xff0c;和数据的传递&#xff0c;那么就需…

Koa学习

Koa 安装与配置 1. 初始化项目 在终端中执行以下命令&#xff1a; # 创建项目文件夹 mkdir koa cd koa# 初始化并安装依赖 npm init -y npm install koa npm install nodemon --save-dev2. 修改 package.json 在 package.json 文件中进行如下修改&#xff1a; {"type…

llava论文阅读

论文名称是 Visual Instruction Tuning 视觉指令微调 摘要 我们首次尝试仅使用语言模型GPT-4来生成多模态的语言-图像指令跟随数据。 通过在生成的数据上进行指令微调&#xff0c;我们引入了LLaVA&#xff08;Large Language and Vision Assistant&#xff09;&#xff1a;一…

c++基础知识复习(1)

前期知识准备 1 构造函数 &#xff08;1&#xff09;默认构造函数&#xff1a;没有参数传入&#xff0c;也没有在类里面声明 &#xff08;2&#xff09;手动定义默认构造函数&#xff1a;没有参数传入&#xff0c;但是在类里面进行了声明 可以在类外实现或者类内实现 以下案…

计算机网络803-(4)网络层

目录 1.虚电路服务 虚电路是逻辑连接 2.数据报服务 3.虚电路服务与数据报服务的对比 二.虚拟互连网络-IP网 1.网络通信问题 2.中间设备 3.网络互连使用路由器 三.分类的 IP 地址 1. IP 地址及其表示方法 2.IP 地址的编址方法 3.分类 IP 地址 &#xff08;1&#x…

LabVIEW中的非阻塞定时器

在LabVIEW编程中&#xff0c;通常需要在某些任务执行过程中进行非阻塞的延时操作。例如&#xff0c;显示某条信息一段时间&#xff0c;同时继续执行其他任务&#xff0c;并在延时时间结束后停止显示该信息。这类需求通常用于处理优先级不同的信息显示&#xff0c;如错误信息需要…