每日学习一个数据结构-AVL树

文章目录

    • 概述
      • 一、定义与特性
      • 二、平衡因子
      • 三、基本操作
      • 四、旋转操作
      • 五、应用场景
    • Java代码实现

概述

AVL树是一种自平衡的二叉查找树,由两位俄罗斯数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明。想了解树的相关概念,请点击这里。以下是对AVL树的详细说明:

一、定义与特性

  1. 定义:AVL树是一种二叉查找树,其中每个节点的左右子树的高度差的绝对值(即平衡因子)不超过1。
  2. 特性
    • 左右子树都是AVL树。
    • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1、0、1)。
    • 任意节点的左右子树的高度差不会超过1,这保证了树的高度相对较低,从而提高了搜索、插入和删除操作的效率。

二、平衡因子

平衡因子(Balance Factor,BF)是AVL树中的一个重要概念,用于衡量节点的左右子树的高度差。平衡因子的值只能是-1、0或1。具体计算方式为:节点的右子树高度减去左子树高度。

三、基本操作

AVL树的基本操作包括插入、删除和查找,这些操作都需要在保持树平衡的前提下进行。

  1. 插入

    • 按照二叉查找树的方式插入新节点。
    • 插入后,从插入点向上回溯,更新每个节点的平衡因子。
    • 如果发现某个节点的平衡因子绝对值超过1,则进行旋转操作以恢复平衡。
  2. 删除

    • 找到要删除的节点,并将其向下旋转成一个叶子节点。
    • 直接删除该叶子节点。
    • 从删除点向上回溯,更新每个节点的平衡因子。
    • 如果发现某个节点的平衡因子绝对值超过1,则进行旋转操作以恢复平衡。
  3. 查找

    • 在AVL树中查找元素的过程与在二叉查找树中相同。
    • 由于AVL树总是保持平衡的,所以查找操作的时间复杂度为O(log n)。

四、旋转操作

旋转操作是AVL树保持平衡的关键。根据节点插入或删除后不平衡的具体情况,AVL树的旋转可以分为四种类型:

  1. 单向右旋(LL):当在节点的左子树的左子树上插入新节点导致节点不平衡(平衡因子为2)时,进行右旋转操作。
  2. 单向左旋(RR):当在节点的右子树的右子树上插入新节点导致节点不平衡(平衡因子为-2)时,进行左旋转操作。
  3. 双向旋转(先左后右,LR):当在节点的左子树的右子树上插入新节点导致节点不平衡(平衡因子为2)时,先进行左旋转再进行右旋转。
  4. 双向旋转(先右后左,RL):当在节点的右子树的左子树上插入新节点导致节点不平衡(平衡因子为-2)时,先进行右旋转再进行左旋转。

五、应用场景

AVL树适用于插入删除次数较少但查找频繁的场景。例如,Windows进程地址空间管理就采用了AVL树来实现高效的查找操作。然而,由于AVL树在插入和删除操作后需要进行复杂的旋转操作来保持平衡,所以其性能在插入和删除操作频繁的场景下可能不如其他数据结构(如红黑树)。

综上所述,AVL树是一种高效的自平衡二叉查找树,通过引入平衡因子和旋转操作来保持树的平衡性,从而提高了搜索、插入和删除操作的效率。

Java代码实现

下面是一个简单的AVL树在Java中的实现。这个实现包括了插入、删除和查找操作,以及必要的旋转操作来维持树的平衡。

class AVLTree {private class Node {int key, height;Node left, right;Node(int d) {key = d;height = 1;}}private Node root;// Utility function to get the height of the treeint height(Node N) {if (N == null)return 0;return N.height;}// Utility function to get the maximum of two integersint max(int a, int b) {return (a > b) ? a : b;}// Right rotate subtree rooted with yNode rightRotate(Node y) {Node x = y.left;Node T2 = x.right;// Perform rotationx.right = y;y.left = T2;// Update heightsy.height = max(height(y.left), height(y.right)) + 1;x.height = max(height(x.left), height(x.right)) + 1;// Return new rootreturn x;}// Left rotate subtree rooted with xNode leftRotate(Node x) {Node y = x.right;Node T2 = y.left;// Perform rotationy.left = x;x.right = T2;// Update heightsx.height = max(height(x.left), height(x.right)) + 1;y.height = max(height(y.left), height(y.right)) + 1;// Return new rootreturn y;}// Get Balance factor of node Nint getBalance(Node N) {if (N == null)return 0;return height(N.left) - height(N.right);}// Insert a node with given key in the subtree rooted with node and returns the new root of the subtreeNode insert(Node node, int key) {// Perform the normal BST insertionif (node == null)return (new Node(key));if (key < node.key)node.left = insert(node.left, key);else if (key > node.key)node.right = insert(node.right, key);else // Duplicate keys are not allowed in BSTreturn node;// Update height of this ancestor nodenode.height = 1 + max(height(node.left), height(node.right));// Get the balance factor of this ancestor node to check whether this node became unbalancedint balance = getBalance(node);// If this node becomes unbalanced, then there are 4 cases// Left Left Caseif (balance > 1 && key < node.left.key)return rightRotate(node);// Right Right Caseif (balance < -1 && key > node.right.key)return leftRotate(node);// Left Right Caseif (balance > 1 && key > node.left.key) {node.left = leftRotate(node.left);return rightRotate(node);}// Right Left Caseif (balance < -1 && key < node.right.key) {node.right = rightRotate(node.right);return leftRotate(node);}// Return the (unchanged) node pointerreturn node;}// Delete a node with given key in the subtree rooted with node and returns the new root of the subtreeNode deleteNode(Node root, int key) {// Perform standard BST deleteif (root == null)return root;if (key < root.key)root.left = deleteNode(root.left, key);else if (key > root.key)root.right = deleteNode(root.right, key);else {// node with only one child or no childif ((root.left == null) || (root.right == null)) {Node temp = null;if (temp == root.left)temp = root.right;elsetemp = root.left;// No child caseif (temp == null) {temp = root;root = null;} else // One child caseroot = temp; // Copy the contents of the non-empty child} else {// node with two children: Get the inorder successor (smallest in the right subtree)Node temp = minValueNode(root.right);// Copy the inorder successor's data to this noderoot.key = temp.key;// Delete the inorder successorroot.right = deleteNode(root.right, temp.key);}}// If the tree had only one node then returnif (root == null)return root;// Update height of the current noderoot.height = max(height(root.left), height(root.right)) + 1;// Get the balance factor of this node (to check whether this node became unbalanced)int balance = getBalance(root);// If this node becomes unbalanced, then there are 4 cases// Left Left Caseif (balance > 1 && getBalance(root.left) >= 0)return rightRotate(root);// Left Right Caseif (balance > 1 && getBalance(root.left) < 0) {root.left = leftRotate(root.left);return rightRotate(root);}// Right Right Caseif (balance < -1 && getBalance(root.right) <= 0)return leftRotate(root);// Right Left Caseif (balance < -1 && getBalance(root.right) > 0) {root.right = rightRotate(root.right);return leftRotate(root);}return root;}Node minValueNode(Node node) {Node current = node;// Loop down to find the leftmost leafwhile (current.left != null)current = current.left;return current;}// A utility function to do inorder traversal of BSTvoid inorder(Node root) {if (root != null) {inorder(root.left);System.out.print(root.key + " ");inorder(root.right);}}// Main functionpublic static void main(String[] args) {AVLTree tree = new AVLTree();/* Constructing tree given in the above figure */tree.root = tree.insert(tree.root, 10);tree.root = tree.insert(tree.root, 20);tree.root = tree.insert(tree.root, 30);tree.root = tree.insert(tree.root, 40);tree.root = tree.insert(tree.root, 50);tree.root = tree.insert(tree.root, 25);/* The constructed AVL Tree would be30/  \20   40/  \     \10   25     50*/System.out.println("Inorder traversal of the constructed AVL tree is:");tree.inorder(tree.root);System.out.println("\n\nDelete 20");tree.root = tree.deleteNode(tree.root, 20);System.out.println("Inorder traversal of the modified tree is:");tree.inorder(tree.root);System.out.println("\n\nDelete 30");tree.root = tree.deleteNode(tree.root, 30);System.out.println("Inorder traversal of the modified tree is:");tree.inorder(tree.root);System.out.println("\n\nDelete 50");tree.root = tree.deleteNode(tree.root, 50);System.out.println("Inorder traversal of the modified tree is:");tree.inorder(tree

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/55794.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何让本地GGUF模型通过Ollama进行管理和推理

Ollama 除了通过从支持模型列表中 pull 的下载模型方式&#xff0c;也支持手动导入GGUF模型。 关键是需要创建一个 Modelfile 文件&#xff0c;和将项目打包成docker image的过程有点类似。 Modelfile 内容的创建可以参考通过 ollama pull 命令拉取的模型对应的 Modelfile &…

YOLO11改进|注意力机制篇|引入NAM注意力机制

目录 一、【NAM】注意力机制1.1【NAM】注意力介绍1.2【NAM】核心代码 二、添加【NAM】注意力机制2.1STEP12.2STEP22.3STEP32.4STEP4 三、yaml文件与运行3.1yaml文件3.2运行成功截图 一、【NAM】注意力机制 1.1【NAM】注意力介绍 下图是【NAM】的结构图&#xff0c;让我们简单分…

微服务实战——注册功能

注册 1.1. 配置 Configuration public class GulimallConfig implements WebMvcConfigurer {/*** 视图映射* param registry*/Overridepublic void addViewControllers(ViewControllerRegistry registry) {/*** GetMapping("/login.html")* public String …

C++ day04(友元 friend、运算符重载、String字符串)

目录 【1】友元 friend 1》概念 2》友元函数 3》友元类 4》友元成员函数 【2】运算符重载 1》概念 2》友元函数运算符重载 ​编辑 3》成员函数运算符重载 4》赋值运算符与类型转换运算符重载 5》注意事项 【3】String 字符串类 【1】友元 friend 1》概念 定义&#x…

YOLOv5改进——添加SimAM注意力机制

目录 一、SimAM注意力机制核心代码 二、修改common.py 三、修改yolo.py ​三、建立yaml文件 四、验证 一、SimAM注意力机制核心代码 在models文件夹下新建modules文件夹&#xff0c;在modules文件夹下新建一个py文件。这里为simam.py。复制以下代码到文件里面。 import…

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)2.7-2.8

目录 第四门课 卷积神经网络&#xff08;Convolutional Neural Networks&#xff09;第二周 深度卷积网络&#xff1a;实例探究&#xff08;Deep convolutional models: case studies&#xff09;2.7 Inception 网络&#xff08;Inception network&#xff09;2.8 使 用 开 源 …

【Linux】 TCP短服务编写和守护进程

文章目录 TCP 短服务编写流程进程组和会话和守护进程 TCP 短服务编写流程 TCP服务器是面向连接的&#xff0c;客户端在发送数据之前需要先与服务器建立连接。 因此&#xff0c;TCP服务器需要能够监听客户端的连接请求。为了实现这一功能&#xff0c;需要将TCP服务器创建的套接字…

75. 颜色分类

思路 先排最小的数&#xff0c;将最小的数都放至列表前面 则0~r-1都是最小值 从r到len(nums)-1继续进行排序&#xff0c;从尾部开始&#xff0c;将最大值放置尾部 class Solution(object):def sortColors(self, nums):""":type nums: List[int]:rtype: None …

Python | Leetcode Python题解之第468题验证IP地址

题目&#xff1a; 题解&#xff1a; class Solution:def validIPAddress(self, queryIP: str) -> str:if queryIP.find(".") ! -1:# IPv4last -1for i in range(4):cur (len(queryIP) if i 3 else queryIP.find(".", last 1))if cur -1:return &q…

Window系统编程 - 文件操作

前言 各位师傅大家好&#xff0c;我是qmx_07&#xff0c;今天主要介绍使用windows系统编程操作读写文件 文件 CreateFile()函数讲解 介绍:该函数用于打开文件或者I/O流设备&#xff0c;文件、文件流、目录、物理磁盘、卷、控制台缓冲区、磁带驱动器、通信资源、mailslot 和…

Jenkins Pipline流水线

提到 CI 工具&#xff0c;首先想到的就是“CI 界”的大佬--]enkjns,虽然在云原生爆发的年代,蹦出来了很多云原生的 CI 工具,但是都不足以撼动 Jenkins 的地位。在企业中对于持续集成、持续部署的需求非常多,并且也会经常有-些比较复杂的需求,此时新生的 CI 工具不足以支撑这些很…

看门狗电路设计

看门狗电路设计 看门狗是什么应用架构图TPV6823芯片功能硬件时序图为什么要一般是要保持200个毫秒左右的这种低电平的时间看门狗电路实际应用与条件 看门狗是什么 硬件看门狗芯片&#xff0c;Watch DogTimer&#xff0c;可用于受到电气噪音、电源故障、静电放电等影响(造成软件…

LSTM(长短时记忆网络)

一、引言 在处理序列数据时&#xff0c;循环神经网络&#xff08;RNN&#xff09;虽然能够处理序列数据并保留历史信息&#xff0c;但在实践中发现它对于捕捉长时间依赖关系的能力有限&#xff0c;尤其是在训练过程中容易遇到梯度消失或梯度爆炸的问题。为了解决这些问题&…

力扣1031. 两个非重叠子数组的最大和

力扣1031. 两个非重叠子数组的最大和 题目解析及思路 题目要求找到两段长分别为firstLen 和 secondLen的子数组&#xff0c;使两段元素和最大 图解见灵神 枚举第二段区间的右端点&#xff0c;在左边剩余部分中找出元素和最大的第一段区间&#xff0c;并用前缀和优化求子数组…

Nginx基础详解5(nginx集群、四七层的负载均衡、Jmeter工具的使用、实验验证集群的性能与单节点的性能)

续Nginx基础详解4&#xff08;location模块、nginx跨域问题的解决、nginx防盗链的设计原理及应用、nginx模块化解剖&#xff09;-CSDN博客 目录 14.nginx集群&#xff08;前传&#xff09; 14.1如何理解单节点和集群的概念 14.2单节点和集群的比较 14.3Nginx中的负载均衡…

对象的概念

对象是编程中一个重要的概念&#xff0c;尤其在面向对象编程&#xff08;OOP&#xff09;中更为核心。简单来说&#xff0c;对象是一种数据结构&#xff0c;它可以存储相关的数据和功能。以下是关于对象的详细描述&#xff1a; 1. 对象的定义 对象是属性&#xff08;数据&…

QT入门教程攻略 QT入门游戏设计:贪吃蛇实现 QT全攻略心得总结

Qt游戏设计&#xff1a;贪吃蛇 游戏简介 贪吃蛇是一款经典的休闲益智类游戏&#xff0c;玩家通过控制蛇的移动来吃掉地图上的食物&#xff0c;使蛇的身体变长。随着游戏的进行&#xff0c;蛇的移动速度会逐渐加快&#xff0c;难度也随之增加。当蛇撞到墙壁或自己的身体时&…

深入探讨JavaScript中的精度问题:原理与解决方案

深入探讨JavaScript中的精度问题&#xff1a;原理与解决方案 在日常的JavaScript开发中&#xff0c;我们经常会遇到一些令人困惑的数值计算问题&#xff0c;特别是涉及到小数点运算时。例如&#xff0c;为什么0.1 0.2的结果不是预期的0.3&#xff0c;而是0.30000000000000004…

Laravel Filament 如何配置多语言支持

演示 一、安装拓展包outerweb/filament-translatable-fields composer require outerweb/filament-translatable-fields配置模型 该套件包含一个名为 HasTranslations 的特性&#xff0c;用于使 Eloquent 模型具备多语言功能。翻译值以 JSON 格式存储&#xff0c;并不需要额外…

Run the FPGA VI 选项的作用

Run the FPGA VI 选项的作用是决定当主机 VI 运行时&#xff0c;FPGA VI 是否会自动运行。 具体作用&#xff1a; 勾选 “Run the FPGA VI”&#xff1a; 当主机 VI 执行时&#xff0c;如果 FPGA VI 没有正在运行&#xff0c;系统将自动启动并运行该 FPGA VI。 这可以确保 FPG…