髓质脊髓三叉神经核文献阅读笔记

文献阅读

1.RNA-seq

对于大量RNA测序,收集第30天的类器官。使用FastPure细胞/组织总RNA分离试剂盒根据制造商的方案提取总RNA。采用Nanodrop 2000分光光度计测定RNA浓度和纯度。使用Agilent 2100生物分析仪和2100 RNA纳米6000检测试剂盒评估RNA样品的完整性。简单地说,对于样品C3、C4、C6和C9 (hmSpVO_rep1),使用TruSeq搁浅mRNA LT Sample Prep Kit构建文库,并在Illumina HiSeq X Ten平台上测序。对hmSpVO_rep2和hmSpVO_ventr样品,采用TIANSeq mRNA Capture Kit制备mRNA,采用TIANSeq Fast RNA Library Kit构建文库。文库在Illumina NovaSeq 6000上测序。
使用STAR v2.7.10a、44将Clean reads与参考基因组(GRCh38)对齐,使用RSEM v1.3.145对每个基因的reads进行计数,计算外显子模型每千碱基每百万mapping reads (TPM)的转录本。我们通过nf-core/rnaseq管道v3.13.2.46实现了这一点,以相同的方式处理hESC和hCO的原始数据。转录组相似性分析采用单样本GSEA方法47,使用GSVA (v 1.44.5) R包,富集评分采用最小-最大尺度进行可视化。背侧和腹侧富集得分的归一化差异被视为背侧特征得分。组织特异性基因列表来自GTEx数据库。大脑区域特异性基因通过voxhunt软件包计算得到前20个基因的特征。

2.ScRNA-seq

对于单细胞RNA测序,收集第30天和第62天的hmSpVOs并将其分离成单细胞。简单地说,6-8个同阶段的hmSpVOs汇集在一起。500 g离心5 min后取出培养基,加入1 ml培养液;类器官用剪刀轻轻切开,并在37℃的金属浴中消化。500 g离心悬浮液5分钟,去除上清,加入1 ml胰蛋白酶,37℃继续消化。C 15- 30min。完全消化后,细胞通过40 mm筛,用DPBS+10% BSA洗涤2-3次进行进一步实验。

为了质量控制,细胞存活率应在80%以上。按照制造商的方案,将细胞以每ml 1000个细胞的浓度(Single Cell 30 library V3)加载到10X Chromium单细胞平台(10X Genomics)上。根据需要收获的细胞数量,构建GEMs (Gel Bead in Emulsion)进行单细胞分离。GEMs形成后,收集GEMs在PCR机中进行反转录标记。然后对gem进行油处理,用磁珠纯化扩增后的cDNA,进行cDNA扩增和质量检测。利用质量合格的cDNA构建3′基因表达文库。经过片段化、接头连接、样本索引PCR等步骤,文库在Illumina Novaseq 6000仪器上进行定量检测和测序,末端reads为150碱基对。

为了获得计数矩阵,使用默认参数的Cell Ranger (v 6.1.2)将reads与人类基因组GRCh38 (v 3.0.0,由10X genomics提供)对齐。下游分析使用R软件包Seurat (v4.3.0)进行。3为了质量控制,将检测到的基因在500 ~ 5000之间,UMI计数在4000 ~ 20000之间,线粒体基因比例<10%的细胞作为高质量细胞。使用DoubletFinder (v 2.0.3)40检测并删除双元。计数通过该细胞的总表达归一化,乘以1万的比例因子,并进行对数变换,然后检测前2000个高度可变的基因(Seurat中的NormalizeDataand FindVariableFeatures功能)。

对于数据集成和注释,在SeuratWrappers包(v 0.3.1)中使用MNN方法49去除了批处理效应。

在缩放基因表达和执行降维后,我们使用均匀流形逼近和投影(UMAP)嵌入可视化细胞。前20个维度用于识别单元和集群的邻居,分辨率为1。用规范标记标记聚类注释。我们首先根据神经元标记物(STMN和DCX)和早期神经发生标记物(SOX2和NES)的表达情况对神经元和非神经元集群进行分类。然后,将非神经元细胞群分为表达SOX2的神经祖细胞群(NPC)和表达NHLH1和INA50的中间祖细胞群(IP)。神经元簇分为兴奋性神经元簇(ExN,表达SLC17A6)、抑制性神经元簇(InN,表达GAD1、GAD2和SLC32A1)和未成熟神经元簇(IM,不表达神经元类型特异性标记物)。

我们使用在Seurat中实现的基于锚定的标签转移,将转录组相似性与已发表的发育中的人脑(5-14孕周后(pcw)) scRNAseq数据23进行比较。要做到这一点,我们首先随机抽取100k个细胞,并使用每个供体作为参考数据集的批处理因子与IntegrateData函数进行集成。然后,使用具有前30个维度的FindTransferAnchors函数识别和过滤查询和参考数据集之间的锚。然后,使用TransferData函数计算预测分数。用热图显示细胞类型和区域相似性(定义为每种细胞类型的平均预测分数)。我们进一步使用MapQuery函数将我们的数据投影到参考的UMAP图上。
为了检验样本的区域一致性,我们使用voxhunt R软件包对成熟神经元簇(ExN和InN)进行无偏空间映射,然后在矢状视图或柱状图中绘制脑区域相似性。为了计算单细胞转录组与髓质背-腹侧亚区的空间相关模式,我们使用AUCell软件包(v 1.18.1)计算每种细胞类型的富集评分,然后进行z缩放以进行可视化。

为了评估具有不同髓核的hmSpVOs的转录组相似性,我们使用与上述相同的方法计算富集分数。使用Allen Brain人脑微阵列数据集(https://human.brain-map.org)(年龄范围为24 ~ 57岁),选择前20倍变化且p<0.05的基因作为每个细胞核相对于其他细胞核的基因签名(表S3)。来自同一核的左右半球的数据被合并进行分析。

为了了解潜在的亚核特异性特征,我们分析了Vo (MAFB和FN1), Vi (IRX2, KCNG4, PDE1C和ZBTB16)和Vc (TAC1, BAIAP3, CAMK2A, CALB2和CALB1)的相对基因表达,分别为ExN和InN绘制了最小-最大缩放对数(每10 k+1计数)。

我们使用默认参数的monocle3包(v 1.3.1)51进行轨迹分析,并选择NPC集群作为根节点来排序细胞。采用ggridge (v . 0.5.4)软件包对不同细胞类型进行伪时间脊线绘制。利用ClusterGVis (v 0.1.0)软件包绘制感兴趣基因的伪时间热图。我们还使用scvelo (v0.2.5)43进行了RNA速度分析,scv.tl.velocity函数为“随机”模式,并计算了速度时间来表示分化轨迹。

为了直接比较hmSpVOs与其他区域特异性脑类器官,我们使用harmony (v 0.1.1)整合了来自hCOs(晚期,72天和79天)、8个hThOs(晚期,89天)、12个和hmSpVOs的单细胞RNA-seq数据。4归一化后,使用前2000个变量特征对数据进行缩放并进行主成分分析(PCA)。基于前20个pc,使用默认参数的RunHarmony()函数对Organoids数据集进行整合,利用前20个维度识别细胞和集群的邻居,分辨率为1.8。如上所述,定义了神经元和非神经元簇。我们集中在神经元簇上进行进一步分析。标记阳性细胞为标记基因计数大于0 /总神经元细胞的细胞。使用带有logfc的Seurat中的FindMarkers()函数执行差异分析。阈值= 0参数使用Wilcox测试。以log2倍变化> log2(1.2)、调整p值< 0.01、差异绝对值(pct.1pct.2) > 0.1为差异有统计学意义。

3.GEO数据

在这里插入图片描述

4.hmSpVOs产生

与转录组分析一致,hmSpVOs未显示明显的OLIG3+类A谱系或标记NKX6-1、PHOX2B或NKX2-2的腹侧谱系的生产。此外,在hmSpVOs中未检测到SOX10阳性的神经嵴谱系,类似于hThOs和hCOs。

在较长时间的培养后(第30天),hmSpVOs中生成了大量LMX1B+细胞和PAX2+/LHX1/5+细胞,这表明了与SpV相关的兴奋性和抑制性神经元谱系的发展。通过免疫染色用兴奋性标记物囊泡型谷氨酸转运蛋白2(vGLUT2)和抑制性标记物γ-氨基丁酸(GABA)验证了LMX1B+和PAX2+细胞的身份。

值得注意的是,同源域因子LBX1,其标记延髓中的类B神经元,并决定SpV中中继神经元的体感命运,也在hmSpVOs中广泛表达,而在hThOs或hCOs中则未见。正如我们之前报告的, hCOs和hThOs分别生成TBR1+皮质神经元和TCF7L2+丘脑神经元,这在hmSpVOs中几乎未见生成,这再次表明了hmSpVOs的区域身份独特性。

除了来自H9 hESCs的hmSpVOs外,来自H1 hESCs和hiPSC系RC01001A和RC01001B的hmSpVOs也显示了类似的谱系发展,并且定量分析表明,与hThOs和hCOs相比,从所有细胞系派生的hmSpVOs中特异生成了丰富的PAX2+和LMX1B+细胞,这表明了不同hPSC系中hmSpVO生成的可靠性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/55765.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

选型工单管理系统,从原理到应用全面解读

工单管理系统提升客户支持效率&#xff0c;优化内部协作&#xff0c;强化数据分析。选型需明确需求&#xff0c;比较系统功能和特性&#xff0c;评估试用后选择最适合的系统。ZohoDesk凭其多渠道支持、智能分配、自动化工具、协作工具和数据分析能力&#xff0c;成为企业优选。…

Redis篇(缓存机制 - 基本介绍)(持续更新迭代)

目录 一、缓存介绍 二、经典三缓存问题 1. 缓存穿透 1.1. 简介 1.2. 解决方案 1.3. 总结 2. 缓存雪崩 2.1. 简介 2.2. 解决方案 2.3. 总结 3. 缓存击穿 3.1. 简介 3.2. 解决方案 3.3. 总结 4. 经典三缓存问题出现的根本原因 三、常见双缓存方案 1. 缓存预热 1…

MySQL进阶 - 索引

01 索引概述 【1】概念&#xff1a;索引就是一种有序的数据结构&#xff0c;可用于高效查询数据。在数据库表中除了要保存原始数据外&#xff0c;数据库还需要去维护索引这种数据结构&#xff0c;通过这种数据结构来指向原始数据&#xff0c;这样就可以根据这些数据结构实现高…

一个月学会Java 第8天 方法与递归

Day8 方法与递归 方法这个东西我们之前讲过&#xff0c;但是只是讲了原理并没有详细的讲解东西&#xff0c;还有构造器这个东西&#xff0c;也只是介绍过全貌&#xff0c;构造器其实就是一个特殊的方法&#xff0c;但是由于特殊&#xff0c;所以我们之后再讲&#xff0c;还有一…

yolov8/9/10/11模型在中医舌苔分类识别中的应用【代码+数据集+python环境+GUI系统】

yolov8、9、10、11模型在中医舌苔分类识别中的应用【代码数据集python环境GUI系统】 背景意义 目前随着人们生活水平的不断提高&#xff0c;对于中医主张的理念越来越认可&#xff0c;对中医的需求也越来越多。 传统中医的舌诊主要依赖于医生的肉眼观察&#xff0c;仅仅通过这…

69.【C语言】动态内存管理(重点)(2)

本文为数据结构打下基础 备注:数据结构需要掌握指针,结构体和动态内存管理 承接68.【C语言】动态内存管理(重点)(1)文章 目录 3.free函数 cplusplus网的翻译 提炼要点 使用 x86debug环境下, 打开内存窗口 建议 3.free函数 cplusplus的介绍 点我跳转 cplusplus网的翻译…

计算机网络:计算机网络概述:网络、互联网与因特网的区别

文章目录 网络、互联网与因特网的区别网络分类 互联网因特网基于 ISP 的多层次结构的互连网络因特网的标准化工作因特网管理机构因特网的组成 网络、互联网与因特网的区别 若干节点和链路互连形成网络&#xff0c;若干网络通过路由器互连形成互联网 互联网是全球范围内的网络…

信息安全工程师(40)防火墙技术应用

一、防火墙的基本概念 防火墙是一种网络安全设备&#xff0c;用于监控和控制网络流量&#xff0c;以保护网络免受未经授权的访问和攻击。它可以是装配多张网卡的通用计算机&#xff0c;也可能是通用的物理设备。防火墙通过在网络之间设置访问控制策略&#xff0c;对进出的通信流…

JAVA开源项目 加油站管理系统 计算机毕业设计

本文项目编号 T 003 &#xff0c;文末自助获取源码 \color{red}{T003&#xff0c;文末自助获取源码} T003&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 查…

vue3中el-input在form表单按下回车刷新页面

摘要&#xff1a; 在input框中点击回车之后不是调用我写的回车事件&#xff0c;而是刷新页面&#xff01; 如果表单中只有一个input 框则按下回车会直接关闭表单 所以导致刷新页面 再写一个input 表单 &#xff0c;并设置style“display:none” <ElInput style"display…

[Python] 使用Python自定义生成二维码

文章目录 目录 安装 qrcode 库生成简单的二维码代码讲解 生成自定义样式的二维码代码讲解 生成带有链接的二维码代码讲解 Demo代码实现代码讲解 总结 收录专栏: [Python] 二维码是现在非常常用的一种信息存储和传递方式&#xff0c;我们可以通过扫描二维码来快速获取文本、链接…

论文精读之Label-Augmented Dataset Distillation (LADD)标签增强数据集蒸馏

[TOC](论文精度之Label-Augmented Dataset Distillation (LADD)标签增强数据集蒸馏) 0.前言 现在开始要不断培养我自身的阅读论文的能力,我的方法不一定是对的,但是不犯错的前提就在于要先犯错,提早去培养自己该方面的能力,其实很早之前就了解到了一些论文学习的方法,但自己总…

Redis 5 种基本数据类型的前两个详解

Redis 共有 5 种基本数据类型&#xff1a;String&#xff08;字符串&#xff09;、List&#xff08;列表&#xff09;、Set&#xff08;集合&#xff09;、Hash&#xff08;散列&#xff09;、Zset&#xff08;有序集合&#xff09;。 这 5 种数据类型是直接提供给用户使用的&…

SAP ABAP 代码搜索工具 CODE_SCANNER

SAP ABAP 代码搜索工具 CODE_SCANNER 作为一个熟练的 ABAP 经常要查一下某个function有没有被别的程序调用&#xff0c;或者查看某个function在参考别的程序的调用方法。这就会经常用到 CODE_SCANNER 这个TCODE。 例子一&#xff1a;例如查询 某个smartform 被哪个程序调用了&…

网页打不开、找不到服务器IP地址

现象&#xff1a;网络连接ok&#xff0c;软件能正常使用&#xff0c;当网页打不开。 原因&#xff1a;DNS 配置错误导致网站域名无法正确解析造成。 影响DNS设置的&#xff1a;VPN软件、浏览器DNS服务选择、IPv4属性被修改。 1、VPN代理未关闭 2、浏览器DNS解析选择 3、以太…

【韩顺平Java笔记】第8章:面向对象编程(中级部分)【285-296】

文章目录 285. 为什么需要继承286. 继承原理图287. 继承快速入门288. 289. 290. 291. 292. 继承使用细节1,2,3,4,5288.1 继承给编程带来的便利288.2 继承的深入讨论/细节问题 293. 继承本质详解294. 继承课堂练习1295. 继承课堂练习2296. 继承课堂练习3 285. 为什么需要继承 28…

同城O2O系统源码与跑腿配送平台的架构设计与开发方案详解

今天&#xff0c;笔者将与您一同深入探讨同城O2O系统的源码及跑腿配送平台的架构设计与开发方案&#xff0c;助力开发者和企业在这一领域的实践与探索。 一、O2O系统概述 在同城O2O模式中&#xff0c;用户可以通过手机应用或网页平台下单&#xff0c;而配送员则根据订单信息迅…

[图形学]smallpt代码详解(1)

一、简介 本文介绍了著名的99行代码实现全局光照的光线跟踪代码smallpt。 包括对smallpt的功能介绍、编译运行介绍&#xff0c;和对代码的详细解释。希望能够帮助读者更进一步的理解光线跟踪。 二、smallpt介绍 1.smallpt是什么 smallpt(small Path Tracing) 是一个全局光照…

鸿蒙NEXT开始公测,哪些机型可以升级?鸿蒙版微信界面简洁

华为 Harmony OS NEXT 于10月8日正式开启公测&#xff0c;对鸿蒙 NEXT 系统感兴趣&#xff0c;想要第一时间尝鲜鸿蒙系统的话&#xff0c;千万不要错过本篇文章&#xff01; 哪些手机可以参与鸿蒙 NEXT 公测&#xff1f; 首批参与鸿蒙 NEXT 公测的机型有华为 Mate 60 系列、华…

Electron构建桌面应用程序,服务于项目的自主学习记录(持续更新...

无所畏惧地面对未知&#xff0c;并将其视为成长的机会 大纲官网快速入门1.安装node.js -- 这里推荐用nvm管理2.脚手架创建3.electron 包安装到应用的开发依赖4.创建主进程(main.js)并启动项目1.创建页面2.配置main.js3.启动项目 -- 效果 进阶 -- 基于项目场景功能使用场景一&am…