GPTQ vs AWQ vs GGUF(GGML) 速览和 GGUF 文件命名规范

简单介绍一下四者的区别。

参考链接:GPTQ - 2210.17323 | AWQ - 2306.00978 | GGML | GGUF - docs | What is GGUF and GGML?

文章目录

    • GPTQ vs AWQ vs GGUF(GGML) 速览
      • GGUF 文件命名
      • GGUF 文件结构
      • 文件名解析答案
    • 附录
      • GGUF 文件命名
      • GGUF 文件结构

GPTQ vs AWQ vs GGUF(GGML) 速览

  • GPTQ (Generalized Post-Training Quantization)
    GPTQ 是一种基于近似二阶信息的后训练量化技术,能够将模型的权重位宽降低到 3-4 bits,在大幅减少模型大小和计算成本的同时还能保持模型性能。在极端情况下还能量化到 2 bits 甚至 3 进制,但会有一定的性能损失。

  • AWQ (Activation-aware Weight Quantization)

    image-20241004182540373

    AWQ 不会量化模型的所有权重,保留了对模型性能重要的一小部分权重,大大减少了量化损失。如图所示,这里比较极端,是 INT3 量化:

    • 图 a:RTN量化(Round-to-Nearest)
      将权重直接四舍五入到目标位宽,导致性能明显下降,PPL 达到 43.2。

    • 图 b:保护 1% 的显著权重,使用混合精度形式
      这里展示了一种改进策略,即保留 1% 最重要的权重通道使用高精度(FP16),其余使用低精度(INT3)。PPL 降低到 13.0。虽然这种方法能保住性能,但由于需要不同精度切换,硬件效率不高。但这一策略证明了并非所有权重都对模型性能同等重要。

    • 图 c:AWQ 提出的通道缩放量化方法

      AWQ 通过通道缩放保护显著权重,利用激活分布找到重要的权重并缩放它们的值来减少量化误差。相比混合精度形式,AWQ 提升了硬件效率,同时性能与图 b 一致,PPL 也为到 13.0。

  • GGML (GPT-Generated Model Language)
    「显存不够内存来凑」,这是一种文件格式,支持在CPU和GPU上进行推理。

  • GGUF (GPT-Generated Unified Format):
    GGUF 是 GGML 的升级版,提升了扩展和兼容性。

GGUF 文件命名

参考链接:GGUF - docs

GGUF 格式将加载模型所需的所有信息封装在一个文件中,简化了模型的分发和部署。同时,GGUF 文件命名遵循 <BaseName><SizeLabel><FineTune><Version><Encoding><Type><Shard>.gguf 的规则,方便人们快速识别模型的关键信息。具体说明如下:

  • BaseName:模型的基础名称或架构名称,例如 Llama
  • SizeLabel:模型的参数规模标签,表示模型的参数数量及可能的专家数量,格式为 <expertCount>x<count><scale-prefix>
    • expertCount:表示专家模型中的专家数量。如果模型没有使用 Mixture of Experts (MoE) 架构,可以省略。
    • Count
      • Q: 表示百万亿(quadrillion)参数。
      • T: 表示万亿(trillion)参数。
      • B: 表示十亿(billion)参数。
      • M: 表示百万(million)参数。
      • K: 表示千(thousand)参数。
        当前主流大模型多为 B 级参数(十亿级),但未来 T(万亿级)模型可能会成为主流。
    • 附加属性:在某些情况下,-<attributes><count><scale-prefix> 可以进一步细化模型的描述,添加额外的参数,例如 Q, K, T,这些表示量化方式或其他模型特性。例如:
      • Q4: 表示 4-bit 量化。
        示例:
      • 7B: 表示 70 亿参数的模型。
      • 4x3T: 表示有 4 个专家的 3 万亿参数模型。
      • 2x10B-Q4: 表示有 2 个专家且采用 Q4 量化的 100 亿参数模型。
  • FineTune:微调目标描述(如 ChatInstruct)。
  • Version(可选):模型的版本号,格式为 v<Major>.<Minor>,没提供则假设为 v1.0
  • Encoding:权重编码方案(如 Q4_0 表示 4-bit 量化)。
  • Type:文件类型,如 LoRA(适配器)或 vocab(仅包含词汇表)。
  • Shard(可选):模型分片信息,格式为 <ShardNum>-of-<ShardTotal>,适用于大型模型。例如 00003-of-00009 表示第 3 个分片,共 9 个分片,注意分片编号从 00001 开始,而非 00000

验证命名是否符合规范的正则:

^(?<BaseName>[A-Za-z0-9\s]*(?:(?:-(?:(?:[A-Za-z\s][A-Za-z0-9\s]*)|(?:[0-9\s]*)))*))-(?:(?<SizeLabel>(?:\d+x)?(?:\d+\.)?\d+[A-Za-z](?:-[A-Za-z]+(\d+\.)?\d+[A-Za-z]+)?)(?:-(?<FineTune>[A-Za-z0-9\s-]+))?)?-(?:(?<Version>v\d+(?:\.\d+)*))(?:-(?<Encoding>(?!LoRA|vocab)[\w_]+))?(?:-(?<Type>LoRA|vocab))?(?:-(?<Shard>\d{5}-of-\d{5}))?\.gguf$

尝试理解下面三个来自官方文档的文件命名,看看你能否正确解析:

  1. Mixtral-8x7B-v0.1-KQ2.gguf
  2. Hermes-2-Pro-Llama-3-8B-F16.gguf
  3. Grok-100B-v1.0-Q4_0-00003-of-00009.gguf

在文章的末尾会给出解析答案,现在请停下来思考。

GGUF 文件结构

*diagram by @mishig25(/Users/home/Downloads/agent/LLM-API-Guide-and-Demos/Guide/assets/313174776-c3623641-3a1d-408e-bfaf-1b7c4e16aa63-2.png)*

如果想进一步了解,查看附录部分的代码。

文件名解析答案

  • Mixtral-8x7B-v0.1-KQ2.gguf

    • BaseName:Mixtral
    • SizeLabel
      • Expert Count: 8
      • Parameter Count: 7B
    • Version:v0.1
    • Encoding:KQ2
  • Hermes-2-Pro-Llama-3-8B-F16.gguf

    • BaseName:Hermes 2 Pro Llama 3
    • SizeLabel
      • Expert Count: 0
      • Parameter Count: 8B
    • Version:v1.0
    • Encoding:F16
  • Grok-100B-v1.0-Q4_0-00003-of-00009.gguf

    • BaseName:Grok
    • SizeLabel
      • Expert Count: 0
      • Parameter Count: 100B
    • Version:v1.0
    • Encoding:Q4_0
    • Shard:第 3 个分片,共 9 个分片

附录

GGUF 文件命名

Quantization Types

类型来源描述
F64Wikipedia64 位标准 IEEE 754 双精度浮点数。
I64GH64 位定宽整数。
F32Wikipedia32 位标准 IEEE 754 单精度浮点数。
I32GH32 位定宽整数。
F16Wikipedia16 位标准 IEEE 754 半精度浮点数。
BF16Wikipedia32 位 IEEE 754 单精度浮点数的 16 位简化版本。
I16GH16 位定宽整数。
Q8_0GH8 位四舍五入量化(q)。每个块有 32 个权重。权重公式:w = q * block_scale。目前已不广泛使用的过时量化方法。
Q8_1GH8 位四舍五入量化(q)。每个块有 32 个权重。权重公式:w = q * block_scale + block_minimum。目前已不广泛使用的过时量化方法。
Q8_KGH8 位量化(q)。每个块有 256 个权重。仅用于量化中间结果。此量化类型支持所有 2-6 位点积。权重公式:w = q * block_scale
I8GH8 位定宽整数。
Q6_KGH6 位量化(q)。超块包含 16 个块,每个块有 16 个权重。权重公式:w = q * block_scale(8-bit),每个权重占用 6.5625 位。
Q5_0GH5 位四舍五入量化(q)。每个块有 32 个权重。权重公式:w = q * block_scale。目前已不广泛使用的过时量化方法。
Q5_1GH5 位四舍五入量化(q)。每个块有 32 个权重。权重公式:w = q * block_scale + block_minimum。目前已不广泛使用的过时量化方法。
Q5_KGH5 位量化(q)。超块包含 8 个块,每个块有 32 个权重。权重公式:w = q * block_scale(6-bit) + block_min(6-bit),每个权重占用 5.5 位。
Q4_0GH4 位四舍五入量化(q)。每个块有 32 个权重。权重公式:w = q * block_scale。目前已不广泛使用的过时量化方法。
Q4_1GH4 位四舍五入量化(q)。每个块有 32 个权重。权重公式:w = q * block_scale + block_minimum。目前已不广泛使用的过时量化方法。
Q4_KGH4 位量化(q)。超块包含 8 个块,每个块有 32 个权重。权重公式:w = q * block_scale(6-bit) + block_min(6-bit),每个权重占用 4.5 位。
Q3_KGH3 位量化(q)。超块包含 16 个块,每个块有 16 个权重。权重公式:w = q * block_scale(6-bit),每个权重占用 3.4375 位。
Q2_KGH2 位量化(q)。超块包含 16 个块,每个块有 16 个权重。权重公式:w = q * block_scale(4-bit) + block_min(4-bit),每个权重占用 2.5625 位。
IQ4_NLGH4 位量化(q)。超块包含 256 个权重。权重 w 通过 super_block_scaleimportance matrix 计算得到。
IQ4_XSHF4 位量化(q)。超块包含 256 个权重。权重 w 通过 super_block_scaleimportance matrix 计算得到,每个权重占用 4.25 位。
IQ3_SHF3 位量化(q)。超块包含 256 个权重。权重 w 通过 super_block_scaleimportance matrix 计算得到,每个权重占用 3.44 位。
IQ3_XXSHF3 位量化(q)。超块包含 256 个权重。权重 w 通过 super_block_scaleimportance matrix 计算得到,每个权重占用 3.06 位。
IQ2_XXSHF2 位量化(q)。超块包含 256 个权重。权重 w 通过 super_block_scaleimportance matrix 计算得到,每个权重占用 2.06 位。
IQ2_SHF2 位量化(q)。超块包含 256 个权重。权重 w 通过 super_block_scaleimportance matrix 计算得到,每个权重占用 2.5 位。
IQ2_XSHF2 位量化(q)。超块包含 256 个权重。权重 w 通过 super_block_scaleimportance matrix 计算得到,每个权重占用 2.31 位。
IQ1_SHF1 位量化(q)。超块包含 256 个权重。权重 w 通过 super_block_scaleimportance matrix 计算得到,每个权重占用 1.56 位。
IQ1_MGH1 位量化(q)。超块包含 256 个权重。权重 w 通过 super_block_scaleimportance matrix 计算得到,每个权重占用 1.75 位。

GGUF 文件结构

GGUF - docs

enum ggml_type: uint32_t {GGML_TYPE_F32     = 0,GGML_TYPE_F16     = 1,GGML_TYPE_Q4_0    = 2,GGML_TYPE_Q4_1    = 3,// GGML_TYPE_Q4_2 = 4, support has been removed// GGML_TYPE_Q4_3 = 5, support has been removedGGML_TYPE_Q5_0    = 6,GGML_TYPE_Q5_1    = 7,GGML_TYPE_Q8_0    = 8,GGML_TYPE_Q8_1    = 9,GGML_TYPE_Q2_K    = 10,GGML_TYPE_Q3_K    = 11,GGML_TYPE_Q4_K    = 12,GGML_TYPE_Q5_K    = 13,GGML_TYPE_Q6_K    = 14,GGML_TYPE_Q8_K    = 15,GGML_TYPE_IQ2_XXS = 16,GGML_TYPE_IQ2_XS  = 17,GGML_TYPE_IQ3_XXS = 18,GGML_TYPE_IQ1_S   = 19,GGML_TYPE_IQ4_NL  = 20,GGML_TYPE_IQ3_S   = 21,GGML_TYPE_IQ2_S   = 22,GGML_TYPE_IQ4_XS  = 23,GGML_TYPE_I8      = 24,GGML_TYPE_I16     = 25,GGML_TYPE_I32     = 26,GGML_TYPE_I64     = 27,GGML_TYPE_F64     = 28,GGML_TYPE_IQ1_M   = 29,GGML_TYPE_COUNT,
};enum gguf_metadata_value_type: uint32_t {// The value is a 8-bit unsigned integer.GGUF_METADATA_VALUE_TYPE_UINT8 = 0,// The value is a 8-bit signed integer.GGUF_METADATA_VALUE_TYPE_INT8 = 1,// The value is a 16-bit unsigned little-endian integer.GGUF_METADATA_VALUE_TYPE_UINT16 = 2,// The value is a 16-bit signed little-endian integer.GGUF_METADATA_VALUE_TYPE_INT16 = 3,// The value is a 32-bit unsigned little-endian integer.GGUF_METADATA_VALUE_TYPE_UINT32 = 4,// The value is a 32-bit signed little-endian integer.GGUF_METADATA_VALUE_TYPE_INT32 = 5,// The value is a 32-bit IEEE754 floating point number.GGUF_METADATA_VALUE_TYPE_FLOAT32 = 6,// The value is a boolean.// 1-byte value where 0 is false and 1 is true.// Anything else is invalid, and should be treated as either the model being invalid or the reader being buggy.GGUF_METADATA_VALUE_TYPE_BOOL = 7,// The value is a UTF-8 non-null-terminated string, with length prepended.GGUF_METADATA_VALUE_TYPE_STRING = 8,// The value is an array of other values, with the length and type prepended.///// Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes.GGUF_METADATA_VALUE_TYPE_ARRAY = 9,// The value is a 64-bit unsigned little-endian integer.GGUF_METADATA_VALUE_TYPE_UINT64 = 10,// The value is a 64-bit signed little-endian integer.GGUF_METADATA_VALUE_TYPE_INT64 = 11,// The value is a 64-bit IEEE754 floating point number.GGUF_METADATA_VALUE_TYPE_FLOAT64 = 12,
};// A string in GGUF.
struct gguf_string_t {// The length of the string, in bytes.uint64_t len;// The string as a UTF-8 non-null-terminated string.char string[len];
};union gguf_metadata_value_t {uint8_t uint8;int8_t int8;uint16_t uint16;int16_t int16;uint32_t uint32;int32_t int32;float float32;uint64_t uint64;int64_t int64;double float64;bool bool_;gguf_string_t string;struct {// Any value type is valid, including arrays.gguf_metadata_value_type type;// Number of elements, not bytesuint64_t len;// The array of values.gguf_metadata_value_t array[len];} array;
};struct gguf_metadata_kv_t {// The key of the metadata. It is a standard GGUF string, with the following caveats:// - It must be a valid ASCII string.// - It must be a hierarchical key, where each segment is `lower_snake_case` and separated by a `.`.// - It must be at most 2^16-1/65535 bytes long.// Any keys that do not follow these rules are invalid.gguf_string_t key;// The type of the value.// Must be one of the `gguf_metadata_value_type` values.gguf_metadata_value_type value_type;// The value.gguf_metadata_value_t value;
};struct gguf_header_t {// Magic number to announce that this is a GGUF file.// Must be `GGUF` at the byte level: `0x47` `0x47` `0x55` `0x46`.// Your executor might do little-endian byte order, so it might be// check for 0x46554747 and letting the endianness cancel out.// Consider being *very* explicit about the byte order here.uint32_t magic;// The version of the format implemented.// Must be `3` for version described in this spec, which introduces big-endian support.//// This version should only be increased for structural changes to the format.// Changes that do not affect the structure of the file should instead update the metadata// to signify the change.uint32_t version;// The number of tensors in the file.// This is explicit, instead of being included in the metadata, to ensure it is always present// for loading the tensors.uint64_t tensor_count;// The number of metadata key-value pairs.uint64_t metadata_kv_count;// The metadata key-value pairs.gguf_metadata_kv_t metadata_kv[metadata_kv_count];
};uint64_t align_offset(uint64_t offset) {return offset + (ALIGNMENT - (offset % ALIGNMENT)) % ALIGNMENT;
}struct gguf_tensor_info_t {// The name of the tensor. It is a standard GGUF string, with the caveat that// it must be at most 64 bytes long.gguf_string_t name;// The number of dimensions in the tensor.// Currently at most 4, but this may change in the future.uint32_t n_dimensions;// The dimensions of the tensor.uint64_t dimensions[n_dimensions];// The type of the tensor.ggml_type type;// The offset of the tensor's data in this file in bytes.//// This offset is relative to `tensor_data`, not to the start// of the file, to make it easier for writers to write the file.// Readers should consider exposing this offset relative to the// file to make it easier to read the data.//// Must be a multiple of `ALIGNMENT`. That is, `align_offset(offset) == offset`.uint64_t offset;
};struct gguf_file_t {// The header of the file.gguf_header_t header;// Tensor infos, which can be used to locate the tensor data.gguf_tensor_info_t tensor_infos[header.tensor_count];// Padding to the nearest multiple of `ALIGNMENT`.//// That is, if `sizeof(header) + sizeof(tensor_infos)` is not a multiple of `ALIGNMENT`,// this padding is added to make it so.//// This can be calculated as `align_offset(position) - position`, where `position` is// the position of the end of `tensor_infos` (i.e. `sizeof(header) + sizeof(tensor_infos)`).uint8_t _padding[];// Tensor data.//// This is arbitrary binary data corresponding to the weights of the model. This data should be close// or identical to the data in the original model file, but may be different due to quantization or// other optimizations for inference. Any such deviations should be recorded in the metadata or as// part of the architecture definition.//// Each tensor's data must be stored within this array, and located through its `tensor_infos` entry.// The offset of each tensor's data must be a multiple of `ALIGNMENT`, and the space between tensors// should be padded to `ALIGNMENT` bytes.uint8_t tensor_data[];
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/55380.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Resdis中关于字符串类型的基础命令

本文主要详解key-value中vaule为字符串类型的情况&#xff0c;value属于其他的数据类型不适应&#xff1b;有几个命令是通用命令 目录 1.set和get 2.keys 3.exists 4.del 5.expire 6.ttl 7.type 8.object encoding key 9.加减操作 10.字符串操作 11.命令小结 1.se…

DCGAN生成漫画头像

tutorials/application/source_zh_cn/generative/dcgan.ipynb MindSpore/docs - Gitee.com 在下面的教程中&#xff0c;我们将通过示例代码说明DCGAN网络如何设置网络、优化器、如何计算损失函数以及如何初始化模型权重。在本教程中&#xff0c;使用的动漫头像数据集共有70,17…

python UNIT 3 选择与循环(2)

目录 1。循环的优化 经典优化分析&#xff1a; 未优化的代码&#xff1a; 细节分析&#xff1a; 优化后的代码&#xff1a; 优化的细节&#xff1a; 性能对比 优化的关键在于&#xff1a; 经典习题讲解&#xff1a;(紫色的解析请重点关注一下) 1。例三 个人代码解析…

SpringMVC源码-AbstractUrlHandlerMapping处理器映射器将实现Controller接口的方式定义的路径存储进去

DispatcherServlet的initStrategies方法用来初始化SpringMVC的九大内置组件 initStrategies protected void initStrategies(ApplicationContext context) {// 初始化 MultipartResolver:主要用来处理文件上传.如果定义过当前类型的bean对象&#xff0c;那么直接获取&#xff0…

随笔(四)——代码优化

文章目录 前言1.原本代码2.新增逻辑3.优化逻辑 前言 原逻辑&#xff1a;后端data数据中返回数组&#xff0c;数组中有两个对象&#xff0c;一个是属性指标&#xff0c;一个是应用指标&#xff0c;根据这两个指标展示不同的多选框 1.原本代码 getIndicatorRange(indexReportLi…

java集合 -- 面试

Java集合框架体系 ArrayList底层实现是数组 LinkedList底层实现是双向链表 HashMap的底层实现使用了众多数据结构&#xff0c;包含了数组、链表、散列表、红黑树等 List ps : 数据结构 -- 数组 ArrayList源码分析 ArrayList底层的实现原理是什么? ArrayList list new…

第二十一章 (动态内存管理)

1. 为什么要有动态内存分配 2. malloc和free 3. calloc和realloc 4. 常⻅的动态内存的错误 5. 动态内存经典笔试题分析 6. 总结C/C中程序内存区域划分 1.为什么要有动态内存管理 我们目前已经掌握的内存开辟方式有 int main() {int num 0; //开辟4个字节int arr[10] …

Django 配置邮箱服务,实现发送信息到指定邮箱

一、这里以qq邮箱为例&#xff0c;打开qq邮箱的SMTP服务 二、django项目目录设置setting.py 文件 setting.py 添加如下内容&#xff1a; # 发送邮件相关配置 EMAIL_BACKEND django.core.mail.backends.smtp.EmailBackend EMAIL_USE_TLS True EMAIL_HOST smtp.qq.com EMAIL…

828华为云征文|部署多功能集成的协作知识库 AFFiNE

828华为云征文&#xff5c;部署多功能集成的协作知识库 AFFiNE 一、Flexus云服务器X实例介绍二、Flexus云服务器X实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置2.4 Docker 环境搭建 三、Flexus云服务器X实例部署 AFFiNE3.1 AFFiNE 介绍3.2 AFFiNE 部署3.3 AFFiNE 使用 四、…

Win10之解决:设置静态IP后,为什么自动获取动态IP问题(七十八)

简介&#xff1a; CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布&#xff1a;《Android系统多媒体进阶实战》&#x1f680; 优质专栏&#xff1a; Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a; 多媒体系统工程师系列【…

域内密码喷洒 Password Spray 实验

password spray 1. 实验网络拓扑 kali: 192.168.72.128win2008: 192.168.135.129 192.168.72.139win7: 192.168.72.149win2012:(DC) 192.168.72.131 2. 简单原理 Kerberos针对同一个用户&#xff0c;多次的密码尝试请求有锁定保护策略。 但是我们可以切换用户&#xff0c;…

MySQL高阶2082-富有客户的数量

目录 题目 准备数据 分析数据 题目 编写解决方案找出 至少有一个 订单的金额 严格大于 500 的客户的数量。 准备数据 Create table If Not Exists Store (bill_id int, customer_id int, amount int)Truncate table Storeinsert into Store (bill_id, customer_id, amoun…

深入浅出Java多线程(六):Java内存模型

引言 大家好&#xff0c;我是你们的老伙计秀才&#xff01;今天带来的是[深入浅出Java多线程]系列的第六篇内容&#xff1a;Java内存模型。大家觉得有用请点赞&#xff0c;喜欢请关注&#xff01;秀才在此谢过大家了&#xff01;&#xff01;&#xff01; 在并发编程中&#xf…

Python+Matplotlib可视化初等函数示例

import numpy as np import matplotlib.pyplot as pltplt.rcParams[font.sans-serif] [SimHei] plt.rcParams[axes.unicode_minus] Falsefig, axs plt.subplots(2, 3, figsize(15, 10))# 1. 幂函数 x np.linspace(-2, 2, 200) axs[0, 0].plot(x, x**2, labely x^2) axs[0,…

leetcode135:分发糖果

步骤1&#xff1a;计算问题性质的定义 我们需要解决的题目是一个典型的贪心算法问题&#xff0c;要求分发糖果的数量&#xff0c;满足特定条件。以下是问题的详细定义&#xff1a; 输入&#xff1a; ratings&#xff1a;长度为 n 的数组&#xff0c;表示每个孩子的评分&#x…

畅阅读小程序|畅阅读系统|基于java的畅阅读系统小程序设计与实现(源码+数据库+文档)

畅阅读系统小程序 目录 基于java的畅阅读系统小程序设计与实现 一、前言 二、系统功能设计 三、系统实现 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博主介绍&#xff1a;✌️大厂码农|毕设布道师…

51单片机的宠物自动投喂系统【proteus仿真+程序+报告+原理图+演示视频】

1、主要功能 该系统由AT89C51/STC89C52单片机LCD1602显示模块温湿度传感器DS1302时钟模块蓝牙步进电机按键、蜂鸣器等模块构成。适用于猫猫/狗狗宠物自动喂食器等相似项目。 可实现基本功能: 1、LCD1602实时显示北京时间和温湿度 2、温湿度传感器DHT11采集环境温湿度 3、时…

数据在内存中的存储【上】

一.整型在内存中的存储 在讲解操作符的时候&#xff0c;我们就讲过了下面的内容&#xff1a; 整数的2进制表示方法有三种&#xff0c;即 原码、反码和补码 有符号的整数&#xff0c;三种表示方法均有符号位和数值位两部分&#xff0c;符号位都是用0表示"正"&#xff…

数据结构——计数、桶、基数排序

目录 引言 计数排序 1.算法思想 2.算法步骤 3.代码实现 4.复杂度分析 桶排序 1.算法思想 2.算法步骤 3.代码实现 4.复杂度分析 基数排序 1.算法思想 2.算法步骤 3.代码实现 4.复杂度分析 排序算法的稳定性 1.稳定性的概念 2.各个排序算法的稳定性 结束语 引…

在WPF中实现多语言切换的四种方式

在WPF中有多种方式可以实现多语言&#xff0c;这里提供几种常用的方式。 一、使用XML实现多语言切换 使用XML实现多语言的思路就是使用XML作为绑定的数据源。主要用到XmlDataProvider类. 使用XmlDataProvider.Source属性指定XML文件的路径或通过XmlDataProvider.Document指定…