字节豆包C++一面-面经总结

talk is cheap show me the code

lc206:链表反转:给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。

class Solution {
public:ListNode* reverseList(ListNode* head) {if(head==nullptr||!head->next)return head;auto node1=head;auto node2=head->next;node2=reverseList(node2);node1->next->next=node1;node1->next=nullptr;return node2;}
};

lc70爬楼梯进阶,爬楼梯高级进阶:一次可以跳1-n阶台阶

爬楼梯原版:假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

原版:

class Solution {
public:int climbStairs(int n) {vector<int>dp(n+1);//dp[0]=0;if (n <= 1) return n;dp[1]=1;dp[2]=2;for(int i=3;i<=n;i++){dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
};

扩展:(ACM)

#include <iostream>
using namespace std;// 爬楼梯问题的函数,输入 n 表示楼梯的阶数,返回方法数
int climbStairs(int n) {// 如果楼梯阶数小于等于2,直接返回 n,因为方法数就是 nif (n <= 2) {return n;}// 初始化第1阶和第2阶的爬楼梯方法数int dp1 = 1; // 表示到达第1阶的方法数int dp2 = 2; // 表示到达第2阶的方法数// 临时变量用于存储当前阶数的爬楼梯方法数int current = 0;// 动态规划,从第3阶开始计算到第n阶的爬楼梯方法数for (int i = 3; i <= n; i++) {// 当前阶数的方法数是前两阶方法数之和current = dp1 + dp2;// 更新 dp1 和 dp2,准备计算下一阶dp1 = dp2; // dp1 向前移动dp2 = current; // dp2 向前移动}// 最终返回 dp2,表示第n阶的方法数return dp2;
}int main() {int n;// 输入楼梯的阶数cout << "请输入楼梯的阶数:";cin >> n;// 调用函数计算方法数并输出结果int result = climbStairs(n);cout << "爬到第 " << n << " 阶楼梯的不同方法有:" << result << " 种。" << endl;return 0;
}

1.C++的多态实现原理是什么?

多态是:允许同一接口通过不同类型的对象进行不同的行为。通过虚函数和继承体系来实现,就是动态多态。
核心是:虚函数表、虚指针

声明了虚函数时,编译器会创建一个独立的虚函数表
包含了虚函数指针,指向具体实现的函数。
如果子类重写了,那对应的条目将会指向子类的函数实现。

调用虚函数的时候:
通过虚指针找到对应的虚函数表
再根据虚函数表中记录的函数地址,调用具体的函数
这就是运行时多态,它运行的时候确定调用哪个函数。

静态多态:函数重载(函数名相同 参数不同)和模板

2、多态分几种类型?

1.静态:函数重载+模板(允许函数和类以通用方式实现。编译器根据传递的类型生成具体的函数版本。)(泛型编程 不用指定具体类型 可以自动生成具体类型)

2.动态:继承和虚函数

3.多态的特点有哪些?

1.接口的统一:从基类的接口可以调用派生类的行为
2.运行时多态:动态绑定 根据实际类型确定要调用的函数
3.可扩展性+可维护性(高内聚低耦合)
4.虚函数表的开销还是可以挺小的

4.智能指针本质是什么?

我认为智能指针的本质就是一个一个的模板类,然后引入了RAII的机制,资源获取时就初始化,来管理动态分配的资源,确保不使用的时候就可以自动释放。避免内存泄漏。
1.封装了原本的指针,析构函数是自动调用,并且可以自动delete。
2.引用计数:对于特定的那两个 还得维护引用计数,当引用计数为0的时候就释放资源。weak_ptr不影响引用计数的弱引用。防止循环应用。

5.malloc是如何工作的?底层调度原理,是系统调用吗?

首先malloc是在上分配内存,大小可以增长或者缩减。
只要调用malloc,就从堆里寻找大小合适的内存,返回其地址。
但是引入了内存池,就是预申请,然后使用。避免系统调用。
如果出现内存碎片问题,就会用空闲链表(free list) 或 伙伴系统(buddy system)管理。
first-fit:在空闲链表中第一个够大的用
best-fit:选择最小能满足要求的
worst-fit:选择最大的块

malloc用到的系统调用:
1.brk和sbrk:调用用于分配小块内存(通常小于128KB)
2.mmap:用于分配大块内存。

malloc工作过程:
1.初始化空闲链表 初始化呢哦寸尺
2.检查内存池,足够大的就可以分配了
3.内存池不够了,用brk/sbrk or mmap向os申请新的
4.更新空闲链表
5.free就可以释放

6.malloc有哪些缺点?

1.malloc维护了空闲链表 时间开销 性能不佳
2.产生内存碎片
3.仅仅分配了而已,还没有初始化。还得自己初始化。
4.malloc必须搭配free,不然就会内存泄漏
5.还不能动态扩展

7.mmap是什么?

就是内存映射文件,把文件或者其他内容被映射到虚拟地址空间。
避免使用系统调用read和write,提高性能。
程序可以像访问普通内存一样访问文件。

mmap 的使用场景:

文件内容的直接访问:通过映射文件,可以避免数据在用户空间和内核空间之间的拷贝,提高效率。
动态内存分配:在需要分配大块内存时,可以使用 mmap 来避免传统的堆分配方法可能导致的内存碎片问题。
进程间共享内存:通过映射相同的文件,或者使用匿名映射,可以实现进程间的内存共享。

8.多线程会有什么问题?

1.竞争:多个线程同时访问或者修改
2.死锁:等待彼此释放资源的无限期等待。
3.资源的竞争,i/o 内存 cpu
4.执行顺序
5.线程安全

9.Mysql的存储引擎你知道那些?区别是什么
在这里插入图片描述

9.索引分别有什么结构?

1.B树
2.B+树 变种 叶子节点存值 叶子节点还有链表
3.哈希表 键值对 不能范围
4.跳表 logn 随机化实现平衡 动态变化的高效查找

10.B+树和B树有什么区别?

1.B+树所有数据存储在叶子节点中 内部节点只有索引信息。
2.B+树叶子节点之间还有链表链接 可以范围查找
3.B+树的插入删除简单

11.索引使用的时候有什么需要注意的?

  1. 选择合适的索引类型

根据查询需求选择:

对于范围查询(如 BETWEEN、LIKE 'abc%')和排序操作,B-Tree 索引是合适的选择。
对于等值查询(如 =),哈希索引可能更高效。
对于复杂的文本搜索,全文索引(Full-Text Index)适合。
对于需要处理空间数据的应用,R-Tree 索引是合适的选择。
  1. 索引的覆盖范围

选择适当的列进行索引:

通常将经常用于查询条件(WHERE 子句)、排序(ORDER BY)和连接(JOIN)操作的列进行索引。
避免对经常变化的列(如经常更新的字段)进行索引,因为频繁的更新会影响索引的性能。
  1. 索引的数量

避免过多的索引:

虽然索引可以提高查询性能,但每个索引都需要额外的存储空间,并且会增加插入、删除和更新操作的开销。
过多的索引可能会导致性能下降,因此应根据实际需要合理设置索引数量。
  1. 索引的维护

定期重建和优化索引:

索引在数据库的使用过程中可能会变得碎片化。定期重建和优化索引可以提升性能。
在 MySQL 中,可以使用 OPTIMIZE TABLE 语句来优化表和索引。
  1. 索引的覆盖

利用覆盖索引:

覆盖索引(Covering Index)是指索引包含了查询所需的所有列,这样数据库可以通过索引来满足查询,无需访问表的实际数据。
使用覆盖索引可以显著提高查询性能。
  1. 监控和评估

监控索引的性能:

定期使用数据库的性能监控工具来评估索引的使用情况和效率。
使用 EXPLAIN 语句来分析查询执行计划,检查索引的使用情况。
  1. 索引的选择性

考虑索引的选择性:

索引的选择性是指索引列的唯一值的比例。选择性高的索引(唯一值多)通常比选择性低的索引(重复值多)更有效。
对选择性低的列建立索引可能不会带来显著的性能提升。
  1. 联合索引

合理使用联合索引:

对于多个列的查询条件,联合索引可以显著提高性能。需要注意联合索引的列顺序,通常将选择性高的列放在前面。
在查询中使用的列顺序应与联合索引的列顺序相匹配。
  1. 避免覆盖不必要的列

避免创建不必要的索引:

确保索引用于实际需要的列,避免在不经常用于查询的列上创建索引。
检查和移除冗余或无效的索引,以减少维护开销和存储需求。

12.索引的缺点是什么?

  1. 增加存储开销

额外的存储空间:

每个索引都需要额外的存储空间。尤其是在索引涉及多个列时,存储开销会显著增加。
对于大表或有多个索引的表,存储开销可能变得相当可观。
  1. 影响写操作性能

插入、更新和删除的开销:

索引需要在数据插入、更新和删除时进行维护。这会导致额外的开销,因为数据库必须同时更新索引。
在高并发的环境下,频繁的写操作可能导致性能下降。
  1. 可能的维护复杂性

索引的维护:

对索引进行定期维护(如重建、优化)是必要的,以避免碎片化和性能下降。维护索引可能增加管理复杂性和系统开销。
需要监控和分析索引的性能,确保它们在实际应用中仍然有效。
  1. 可能的选择性降低

选择性低的索引:

对选择性较低的列(如包含大量重复值的列)建立索引,可能不会显著提高查询性能,甚至可能导致性能下降。
对这些列的索引可能会增加额外的存储开销,但带来的性能提升有限。
  1. 影响查询优化

查询优化的挑战:

在某些情况下,数据库优化器可能无法选择最优的索引,导致查询性能下降。
需要定期检查和调整索引策略,以确保查询优化器能够利用正确的索引。
  1. 对多表连接的影响

连接性能的影响:

虽然索引可以提高单表查询的性能,但在复杂的多表连接查询中,索引的效果可能会受到限制。
不恰当的索引策略可能导致连接操作的性能问题。

13.使用索引查询一定会变快么?

使用索引通常可以提高查询性能,但并不总是保证查询一定会变快。索引的效果取决于多个因素,包括数据分布、查询类型、索引设计以及数据库的实际执行情况。

  1. 数据选择性

    选择性高的列:索引在选择性高的列上(即列中包含大量唯一值)通常能显著提高查询性能。例如,使用索引在员工表的员工ID列上进行查找。
    选择性低的列:如果索引的列选择性低(即列中包含大量重复值),索引的效果可能有限。例如,在性别列上建立索引,可能不会显著提高查询性能,因为性别列的值重复较多。

  2. 查询类型

    简单查询:对于简单的等值查询,索引通常能显著提高性能。例如,SELECT * FROM employees WHERE employee_id = 123。
    复杂查询:对于复杂的查询,如多表连接、大量数据聚合或子查询,索引的效果可能受到限制。索引不能总是优化所有复杂查询,特别是在涉及大量数据处理时。

  3. 索引设计

    索引选择:选择合适的索引类型(如 B-Tree、哈希索引、全文索引等)以及合理的索引组合对于提高查询性能至关重要。联合索引可能对多列查询更有效。
    索引维护:索引需要定期维护以防止碎片化。未优化的索引可能会影响查询性能。

  4. 查询计划

    数据库优化器会根据查询的执行计划选择是否使用索引。如果优化器判断使用索引不合适,可能会选择全表扫描。
    使用 EXPLAIN 语句可以帮助分析查询的执行计划,检查索引是否被有效使用。

  5. 数据更新频率

索引会增加数据插入、更新和删除操作的开销。如果表的写操作频繁,索引的维护成本可能会抵消其查询性能的提升。
6. 索引的选择性和覆盖性

覆盖索引:使用覆盖索引(即索引包含查询所需的所有列)可以显著提高性能,因为数据库可以只访问索引而不需要回表查询。
索引优化:确保索引列的顺序和组合适应查询条件,以最大化索引的效率。
  1. 表大小

在小表上,索引可能不会有明显的性能提升,因为全表扫描的成本可能与使用索引的成本相当。

14.redis有哪些持久化策略?二者在实际使用上有什么差异呢?

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/54860.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RHCSA认证-Linux(RHel9)-Linux入门

文章目录 概要一、创建、查看和编辑⽂本1.1 输出重定向1.2 vim编辑器1.3 shell 变量1.5 获取帮助 二、管理本地用户和组2.1 描述用户2.2 切换用户和赋权2.3 用户管理2.4 用户组管理2.5 密码策略 三、控制文件访问3.1 列出文件和文件权限3.2 更改文件权限和拥有者3.3 控制默认权…

Node.js官网无法正常访问时安装NodeJS的方法

目录 一、使用 nvm 进行安装二、通过阿里云开源镜像站进行安装 一、使用 nvm 进行安装 此时如果直接使用 nvm install 命令进行安装会报错&#xff1a; nvm install 16.14.0Could not retrieve https://nodejs.org/dist/latest/SHASUMS256.txt. Get “https://nodejs.org/dis…

STM32精确控制步进电机

目的&#xff1a;学习使用STM32电机驱动器步进电机&#xff0c;进行电机运动精确控制。 测试环境&#xff1a; MCU主控芯片STM32F103RCT6 &#xff1b;A4988步进电机驱动器模块&#xff1b; 微型2相4线步…

AMP网站如何适配提升SEO效果?

AMP网站如何适配提升SEO效果&#xff1f; 很多网站本来就有了 PC 和 M 站&#xff0c;现在多来了个 AMP&#xff0c;如何适配提升网站SEO效果呢&#xff1f;有两种适配形式&#xff1a; 1.PC AMP 这种形式比较简单&#xff0c;只需要配置好 amphtml 和 canonical 即可。关系…

论文阅读《Co-clustering for Federated Recommender System》

论文概况 本文是2024 WWW的一篇联邦推荐论文&#xff0c;提出了一个基于特定类别物品相似度来进行聚类的联邦推荐框架。 Introduction 分析了经典聚类技术KMeans在联邦推荐设置中的不足&#xff0c;提出了一种新的共聚类联邦推荐机制CoFedRec&#xff0c;该机制在每个通信回合…

堆排序算法详解:原理与Python实现

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storm…

后端回写前端日期格式化

问题 不进行格式化处理&#xff0c;就会导致传递的字符串很奇怪 解决方案 注解&#xff08;字段&#xff09; <dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jackson-databind</artifactId><version>2.9.2</…

【unity进阶知识1】最详细的单例模式的设计和应用,继承和不继承MonoBehaviour的单例模式,及泛型单例基类的编写

文章目录 前言一、不使用单例二、普通单例模式1、单例模式介绍实现步骤&#xff1a;单例模式分为饿汉式和懒汉式两种。 2、不继承MonoBehaviour的单例模式2.1、基本实现2.2、防止外部实例化对象2.3、最终代码 3、继承MonoBehaviour的单例模式3.1、基本实现3.2、自动创建和挂载单…

QT窗口无法激活弹出问题排查记录

问题背景 问题环境 操作系统: 银河麒麟V10SP1qt版本 : 5.12.12 碰见了一个问题应用最小化,然后激活程序窗口无法弹出 这里描述一下代码的逻辑,使用QLocalServer实现一个单例进程,具体的功能就是在已存在一个程序A进程时,再启动这个程序A,新的程序A进程会被杀死,然后激活已存…

linux信号| 学习信号三步走 | 学习信号需要打通哪些知识脉络?

前言: 本节内容主要讲解linux下信号的预备知识以及信号的概念&#xff0c; 信号部分我们将会分为几个阶段进行讲解&#xff1a;信号的概念&#xff0c; 信号的产生&#xff0c; 信号的保存。本节主要讲解信号 ps:本节内容适合学习了进程相关概念的友友们进行观看哦 目录 什么是…

电脑上数据丢了怎么找回来 Win系统误删文件如何恢复

无论是在工作中&#xff0c;还是生活中&#xff0c;电脑都是不可缺少的重要工具&#xff0c;尤其是在工作中&#xff0c;电脑不仅可以高效的完成工作&#xff0c;还可以存储工作中的重要资料。不过在使用电脑的时候&#xff0c;也会遇到数据丢失的情况。针对这一问题&#xff0…

水面巡检船垃圾漂浮物检测系统源码分享

水面巡检船垃圾漂浮物检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of …

在GPU计算型实例中安装Tesla驱动超详细过程

摘要&#xff1a;在深度学习、AI等通用计算业务场景或者OpenGL、Direct3D、云游戏等图形加速场景下&#xff0c;安装了Tesla驱动的GPU才可以发挥高性能计算能力&#xff0c;或提供更流畅的图形显示效果。如果您在创建GPU计算型实例&#xff08;Linux&#xff09;时未同时安装Te…

Linux服务器安装Anaconda环境

Linux浪潮云服务器安装Anaconda环境 读研之后在导师的帮助下&#xff0c;获得了浪潮的一台公共云服务器。以后做实验跑代码就可以使用云服务器上的虚拟环境了。减少了自己笔记本的压力。在创建并保存完成镜像环境之后。最重要的就是安装好深度学习需要的Anaconda环境&#xff0…

“类型名称”在Go语言规范中的演变

Go语言规范&#xff08;The Go Programming Language Specification&#xff09;[1]是Go语言的核心文档&#xff0c;定义了该语言的语法、类型系统和运行时行为。Go语言规范的存在使得开发者在实现Go编译器时可以依赖一致的标准&#xff0c;它确保了语言的稳定性和一致性&#…

python -tkinter

在Button的command绑定中&#xff0c;如果给的一个函数&#xff0c;则表示执行一次。 import tkinter as Tkfrom tkinter import messageboxi 0def myLabel():global root,is Tk.Label(root,text"the import thing is :" )s.pack()root Tk.Tk()def fun1():if mess…

[PICO VR眼镜]眼动追踪串流Unity开发与使用方法,眼动追踪打包报错问题解决(Eye Tracking/手势跟踪)

前言 最近在做一个工作需要用到PICO4 Enterprise VR头盔里的眼动追踪功能&#xff0c;但是遇到了如下问题&#xff1a; 在Unity里面没法串流调试眼动追踪功能&#xff0c;根本获取不到Device&#xff0c;只能将整个场景build成APK&#xff0c;安装到头盔里&#xff0c;才能在…

【Python语言初识(五)】

一、文件和异常 在Python中实现文件的读写操作其实非常简单&#xff0c;通过Python内置的open函数&#xff0c;我们可以指定文件名、操作模式、编码信息等来获得操作文件的对象&#xff0c;接下来就可以对文件进行读写操作了。这里所说的操作模式是指要打开什么样的文件&#…

泛型(Java)

1.泛型&#xff1a; 将数据类型作为参数进行传递。(传递的数据类型必须是引用数据类型) 本质是参数化类型。 泛型集合&#xff1a;可以约束集合内的元素类型 典型泛型集合ArrayList<E>、HashMap<K,V> <E>、<K,V>表示该泛型集合中的元素类型泛型集合中的…

计算机视觉学习路线

计算机视觉&#xff08;Computer Vision&#xff09;是计算机科学的一个重要分支&#xff0c;旨在使计算机能够理解和解释视觉数据。以下是一个详细的计算机视觉学习路线&#xff0c;帮你系统地掌握这个领域所需的知识和技能。 1. 基础数学和编程 在深入学习计算机视觉之前&…