图像检测【YOLOv5】——深度学习

Anaconda的安装配置:(Anaconda是一个开源的Python发行版本,包括Conda、Python以及很多安装好的工具包,比如:numpy,pandas等,其中conda是一个开源包和环境管理器,可以用于在同一个电脑上安装不同版本的软件包,并且可以在不同环境之间切换,是深度学习的必备平台。)

一.Anaconda安装配置.

1.首先进入官网:Anaconda Installers and Packages,选择View All Installers.

2.打开看到的界面是Anaconda的所以安装包版本,Anaconda3就代表是Python3版本,后面跟的是发行日期,我选择了最近的2022.05的Windows版本,64位,然后下载到本地。

3.运行安装包,然后跟着我下面的步骤操作就可以了。

4.要测试一下是否安装成功:

  在菜单栏中打开Anaconda命令行,点击以后,如果可以在命令行左侧括号中看到base,就代表安装成功了。

5.最后要创建和激活一下环境:

conda create -n py39 python=3.9是创建python3.9版本,名称为py39的环境。小伙伴们在这里注意一下,环境名和python的版本是可以自己指定的嗷~】     

输入y然后回车,下载完会提示done。

conda activate py39激活环境,这里可以看到前面的base变成了py39了,这表示咱已经进入了该环境可以把环境理解成文件夹)。

conda deactivate退出环境跟我们平常用cmd命令行时cd切换目录是一个道理啦~

二.Python安装Pytorch.

1.查看本机的CUDA版本:

在cmd命令行输入nvida-smi,在第一行右边可以看到CUDA的版本号,我的是11.6版本。

2.安装Pytorch:

进入Pytorch官网:PyTorch,然后选择Get Started.

这里要注意的是:Pytorch的选择,这里我选择的是Stable稳定版,OS是Windows系统,Package包就使用Conda,language选Python,最后的Compute Platform就根据小伙伴们的的个人需求啦~(就是说如果自己的电脑有显卡,想在NVIDIA上跑代码,就选择CUDA,如果没有独立显卡就选CPU喔)然后我们在第一步已经看过自己的NAVIDA的CUDA版本了,一定要选择比自己版本低的CUDA,比如我的是11.6那我就可以选11.3,如果就像我在帮我同学装的时候他的版本是11.1,那他的就只能选择10.2,11.3对他来说就有点高啦,同理大家一定一定要根据自己的情况选择嗷!

3.然后复制这行命令:打开Anaconda命令行,先进入自己需要安装的Pytorch环境,然后运行。(我这里选择的是11.3,大家如果跟我的不一样记得改下代码哦!)

conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

4.可以看到安装包里的一些内容,等待这些package安装成功,Pytorch还是有点大的,要耐心等一下。(我当时吃了个午饭回来差不多刚刚好哈哈哈哈哈哈哈)

5.安装完成以后,会提示done,然后输入pip list,查看我们的包是否被安装,这里可以看到torch相关的包都安装了。

6.输入python进入Python环境,然后输入import torch,如果没有报错就说明可以导入成功,最后再输入torch.cuda.is_available()查看torch是否可以用显卡,Ture就代表可以 了。

三.克隆YOLOv5.

1.点开链接:https://github.com/ultralytics/yolov5

Windows系统下载ZIP文件再解压后进入YOLOv5路径下运行:

pip install -r requirements.txt

(注意一下:这里Pytorch最好在前面已经安装完好,不然很可能会报错喔~)

2.检验一下,运行命令:

python detect.py --source ./data/images/ --weights yolov5s.pt --conf 0.4

如果是第一次运行,会下载YOLOv5s.pt,速度会比较慢。

————————————————————————————————————————————————————【华丽的分割线哈哈哈哈哈哈哈哈哈哈哈哈】

以上的部分呢,就是基本环境的安装和配置方法啦!接下来,就是数据集的制作了:

四.数据集制作.

我用的数据集收集软件是labellmg,它可以生成两种格式的数据,分别是xml和txt,大家根据自己的需要选择啦!界面是这样的:

可以看到打开是一个收集窗口和一个终端,两个界面。

如果选择左侧靠下方那里的按键,VOC最后生成的就是xml格式的,点击一下如果选择YOLO的生成就是txt格式的喔~。

大家用自己需要识别训练的图片进行框选数据集收集就可以啦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/53885.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

桥接模式详解和分析JDBC中的应用

🎯 设计模式专栏,持续更新中, 欢迎订阅:JAVA实现设计模式 🛠️ 希望小伙伴们一键三连,有问题私信都会回复,或者在评论区直接发言 桥接模式 文章目录 桥接模式桥接模式的四个核心组成&#xff1a…

How to install OpenAI Universe without getting error code 1 on Windows?

题意:怎样在Windows上安装OpenAI Universe并避免出现错误代码1 问题背景: When I try to install OpenAi Universe on my Windows machine via python pip I get following stacktrace: 当我尝试通过 python pip 在我的 Windows 机器上安装 OpenAI Uni…

S-Procedure的基本形式及使用

理论 Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- \textbf{Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- } Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- tions w.r.t. x ∈ C M 1 \mathbf{x}\in\mathbb{C}^M\times1 x…

dify的介绍

官方网址:https://dify.ai Dify 是一个开源的大型语言模型(LLM)应用开发平台,它提供了一个直观的用户界面,结合了AI工作流、检索-生成(RAG)管道、智能体(Agent)、模型管理…

Grafana 可视化配置

Grafana 是什么 Grafana 是一个开源的可视化和监控工具,广泛用于查看和分析来自各种数据源的时间序列数据。它提供了一个灵活的仪表盘(dashboard)界面,用户可以通过它将数据源中的指标进行图表化展示和监控,帮助分析趋…

国网B接口 USC安防平台 海康摄像机配置

国网B接口海康摄像机配置介绍 如下以海康DS-NACN6432I-GLN摄像机为例,配置国网B接口设备接入流程,海康摄像机的固件版本为 V5.6.11 build 210109 210107。该设备为球机,支持国网B接口云台控制功能。图标编号可以对应二者的配置。 注意 同一…

dify安装(传统docker-compose)

克隆 Dify 代码仓库 克隆 Dify 源代码至本地环境。 git clone --depth 1 https://github.com/langgenius/dify.git启动 Dify 进入 Dify 源代码的 Docker 目录 cd dify/docker-legacy启动 Docker 容器 docker-compose up -d运行命令后,你应该会看到类似以下的输…

Unity3D类似于桌面精灵的功能实现

前言: 由于最近在做游戏魔改,很多功能在游戏里面没法实现(没错,说的就是排行榜),所以准备用Unity3D开发一个类似于桌面精灵的功能部件,实现效果如下: PS:有需要定制的老…

408算法题leetcode--第三天

1672. 最富有客户的资产总量 1672. 最富有客户的资产总量思路&#xff1a;双重循环遍历二维数组时间复杂度&#xff1a;O(mn)&#xff1b;空间&#xff1a;O(1) class Solution { public:int maximumWealth(vector<vector<int>>& accounts) {int ret 0;for(…

Java | Leetcode Java题解之第403题青蛙过河

题目&#xff1a; 题解&#xff1a; class Solution {public boolean canCross(int[] stones) {int n stones.length;boolean[][] dp new boolean[n][n];dp[0][0] true;for (int i 1; i < n; i) {if (stones[i] - stones[i - 1] > i) {return false;}}for (int i 1…

使用 Milvus、vLLM 和 Llama 3.1 搭建 RAG 应用

vLLM 是一个简单易用的 LLM 推理服务库。加州大学伯克利分校于 2024 年 7 月将 vLLM 作为孵化项目正式捐赠给 LF AI & Data Foundation 基金会。欢迎 vLLM 加入 LF AI & Data 大家庭&#xff01;&#x1f389; 在主流的 AI 应用架构中&#xff0c;大语言模型&#xff0…

Python数据处理利器,pivot与melt让表格变得灵活

大家好&#xff0c;在数据分析和处理过程中&#xff0c;数据的重塑是一个非常常见且重要的操作。数据重塑能够从不同的角度观察数据&#xff0c;以更符合分析需求的方式来呈现数据。在Python的Pandas库中&#xff0c;pivot和melt是两种强大的数据重塑工具&#xff0c;能够轻松地…

电离层闪烁

电离层闪烁&#xff0c;有的时候有有的时候无&#xff0c;但是经常出现&#xff0c;导致导航信号的振幅和相位发生变化&#xff0c;影响导航精度。使得载噪比降低。定位精度降低。 电离层闪烁的大小从几米到几百米&#xff0c;所以在使用RTK时&#xff0c;就算是相隔很近的基站…

npm 设置国内镜像源

1.1 镜像源概述 镜像源是软件包管理工具用来下载和安装软件包的服务器地址。由于网络原因&#xff0c;直接使用官方源可能会导致速度慢或连接失败的问题。国内镜像源可以提供更快的访问速度和更稳定的连接。 1.2 镜像源的选择 国内有许多可用的npm镜像源&#xff0c;包括但不限…

OKHttp实现原理分享

前言介绍 大约在2年半之前&#xff0c;就想写一篇关于OKHttp原理的文章&#xff0c;一来深入了解一下其原理&#xff0c;二来希望能在了解原理之后进行更好的使用。但是因为种种原因&#xff0c;一直无限往后推迟&#xff0c;最近因为我们情景智能半个月一次的分享轮到我了&…

【鸿蒙】HarmonyOS NEXT星河入门到实战1-开发环境准备

目录 一、达成目标 二、鸿蒙开发环境准备 2.1 开发者工作下载 2.2 解压安装 2.3 运行配置安装node.js和SDK 2.4 开始创建第一个项目 2.5 预览 2.5.1 预览遇到的问题&#xff08;报错&#xff09; 2.5.2 修改内容查看预览 三、备用下载地址&#xff08;如果下载是4.X版…

Prism库:详解其核心组件和使用方法

Prism库简介 Prism库是一个开源项目&#xff0c;由 Microsoft 社区开发和维护。它是一组用于创建 WPF、UWP 和 Xamarin 应用程序的工具和库&#xff0c;提供了一种基于模块化和依赖注入的架构模式&#xff0c;同时它提供了一系列的工具&#xff0c;帮助开发人员构建可扩展、可…

MATLAB、FPGA、STM32中调用FFT计算频率、幅值及相位差

系列文章目录 文章目录 系列文章目录前言MATLABSTM32调用DSPSTM32中实现FFT关于初相位 FPGA 前言 最近在学习如何在STM32中调用FFT MATLAB 首先对FFT进行一下说明&#xff0c;我们输入N个点的数据到FFT中&#xff0c;FFT会返回N个点的数据&#xff0c;这些数据都是复数&#…

ASP.NET Core 入门教学二十八 linux打包部署

在Linux上打包和部署ASP.NET Core应用程序涉及几个步骤。以下是一个详细的指南&#xff0c;帮助你在Linux系统上完成这一过程。 1. 准备工作 确保你的Linux系统已经安装了以下软件&#xff1a; .NET SDK&#xff08;用于构建应用程序&#xff09;.NET Runtime&#xff08;用…

ctfshow-PHP反序列化

web254 源码 <?php/* # -*- coding: utf-8 -*- # Author: h1xa # Date: 2020-12-02 17:44:47 # Last Modified by: h1xa # Last Modified time: 2020-12-02 19:29:02 # email: h1xactfer.com # link: https://ctfer.com //mytime 2023-12-4 0:22 */ error_reporting(0)…