COD论文笔记 BiRefNet

本质还是一个 U 型编码器解码器结构的分割模型。

在这里插入图片描述
我可以考虑将©和(d)结合,即对解码器的输入不进行 patchify,同时在各个阶段引入梯度参考信息

最近的相关工作,中间监督、额外先验(频率,梯度,边缘等)取得不错效果

作者观察到,对原始图像进行导数运算获得梯度特征,可以很好地反映图像对象中的细微和非显著特征。

双边参考是在解码器中的两个辅助信息:
1.层次化的原始图像块
2.梯度监督信息(对于颜色和纹理上与背景高度相似时,梯度信息过于微弱,此时越引入真实GT特征作为侧向监督)

此外作者提出了一些实用的训练策略。

模型整体结构:

在这里插入图片描述

所谓的定位模块就是编码器,重建模块就是解码器。

对于COD任务,不需要 Cls 模块。

最下面的 ASPP 得到语义信息较强的粗略预测图,然后引导解码器进行细化分割。

不同阶段的patch块大小不同,所以是 multi-scale supervision。

定位模块

重建模块

大的感受野会丢失细节信息,小的感受野会难以定位大尺度目标。作者是如何平衡的呢?

作者使用了可变形卷积DCN来作为重建块(RB)取代普通的残差块( 1 × 1 , 3 × 3 , 7 × 7 1\times1,3\times3,7\times7 1×1,3×3,7×7)。我可以考虑使用最新的DCNv4来进行实验。

在这里插入图片描述
如图所示,所谓的内向参考,其中 F i d + F_i^{d+} Fid+是上一个BirefBlock的输出特征和backbone对应层级特征进行(应该是element-wise addition)得到,然后作为当前BirefBlock的输入,然后作者将当前层级的原始图像进行自适应裁剪得到若干图像块,这两个进行拼接之后送入重构模块,重构模块利用不同感受野和平均池化进行进一步特征提取,然后重构模块输出的特征图副本再送到外向参考中利用梯度监督信息得到 A i G A_i^G AiG , A i G A_i^G AiG F i d ′ F_i^{d'} Fid 进行元素级相乘之后得到特征 F i − 1 d F_{i-1}^d Fi1d

双边参考

内部参考和外部参考分别起到补充高分辨率信息和吸引注意力到细节密集区域的作用。

在内部参考中,原始高分辨率的图像 L L L 被裁剪为与相应解码器阶段的输出特征一致大小的补丁 { P k = 1 N } \{P_{k=1}^N\} {Pk=1N}, 这些补丁与原始特征 F i d + F_i^{d+} Fid+ 叠加后输入重建模块,现有类似技术的方法,要么仅仅在最后的解码阶段添加 L L L,要么将 L L L 调整尺寸,使其适用于低分辨率的原始特征。作者的内部参考通过自适应裁剪避免了这两个问题,并且在每个阶段提供必要的高分辨率信息。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实现细节

在这里插入图片描述

消融实验

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/53385.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Post-Training有多重要?一文带你了解全部细节

1. 简介 随着LLM学界和工业界日新月异的发展,不仅预训练所用的算力和数据正在疯狂内卷,后训练(post-training)的对齐和微调方法也在不断更新。InstructGPT、WebGPT等较早发布的模型使用标准RLHF方法,其中的数据管理风…

高效实用的网站ICP备案查询接口

随着互联网的日益发展,对于网站的监管变得越来越重要。为了更好地管理和监督互联网上的网站,官方要求所有在中国境内的网站都需要进行ICP备案。因此,ICP备案不仅是法律要求,也是衡量一个网站是否正规的重要标志之一。为了便于开发…

【Redis】Redis 集群搭建与管理: 原理、实现与操作

目录 集群 (Cluster)基本概念数据分片算法哈希求余⼀致性哈希算法哈希槽分区算法 (Redis 使⽤) 集群搭建 (基于 docker)第⼀步: 创建⽬录和配置第⼆步: 编写 docker-compose.yml第三步: 启动容器第四步: 构建集群 主节点宕机演⽰效果处理流程1)故障判定2)故障迁移 集群扩容第⼀…

IP/TCP/UDP协议的关键知识点

导语:网络协议是理解网络情况的基础,当遇到网络问题时,首先可以从网络协议入手,熟悉的网络协议可以有效帮助小伙伴们排查或者说定位大概的问题方面。本文整理了目前最常用的网络通信协议,相信对小伙伴们肯定都有帮助。…

el-table使用type=“expand”根据数据条件隐藏展开按钮

一&#xff1a;添加className <el-table :data"tableData" border :loading"loading" :row-class-name"getRowClass" expand-change"expandchange"><el-table-column type"expand"><template #default"…

python学习11-Pytorch张量与数据处理1

ndarray 首先&#xff0c;我们介绍n维数组&#xff0c;也称为张量&#xff08;tensor&#xff09;。 使用过Python中NumPy计算包的读者会对本部分很熟悉。 无论使用哪个深度学习框架&#xff0c;它的张量类&#xff08;在MXNet中为ndarray&#xff0c; 在PyTorch和TensorFlow中…

华为eNSP:NAT Server(端口映射)

一、拓扑图 二、配置过程 此处省略设备地址以及路由配置过程 1、服务器开启ftp服务 2、路由器配置nat server [r4]int g0/0/2#进入流量出接口 [r4-GigabitEthernet0/0/2]nat server protocol tcp global 192.168.3.11 ftp inside 192.168.2.1 ftp# …

SnapGene 5.3.1下载安装教程百度网盘分享链接地址

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 SnapGene介绍 SnapGene 5.3.1下载安装教程百度网盘分享链接地址&#xff0c;SnapGene 是一款由美国公司开发&#xff08;后被收购&#xff09;的分子生物学软件&#xff0c;…

基于YOLO8的图片实例分割系统

文章目录 在线体验快速开始一、项目介绍篇1.1 YOLO81.2 ultralytics1.3 模块介绍1.3.1 scan_task1.3.2 scan_taskflow.py1.3.3 segment_app.py 二、核心代码介绍篇2.1 segment_app.py2.2 scan_taskflow.py 三、结语 代码资源&#xff1a;计算机视觉领域YOLO8技术的图片实例分割…

Java中Json、String、jsonObject、jsonArray格式之间的互相转换 (Fastjson、Gson、String字符串分隔)

1.org中jackson转换json,springboot中内置jackson ObjectMapper onew ObjectMapper();List<>listnew ArrayList();String jonso.writeAsValueString(list); 一、Fastion 使用阿里的fastjson <dependency><groupId>com.alibaba</groupId><artifactId…

使用 JAXB 将内嵌的JAVA对象转换为 xml文件

使用 JAXB 将内嵌的JAVA对象转换为 xml文件 1. 需求2. 实现&#xff08;1&#xff09;FileDesc类&#xff08;2&#xff09;MetaFileXml类&#xff08;3&#xff09;生成对应的xml文件 1. 需求 获取一个目录下所有文件的元数据信息&#xff08;文件名、大小、后缀等&#xff0…

1.2CubeMAX创建FREERTOS入门示例

1.CUBEMAX快速配置 V2改为V1否则编译会报错 2.Freertos各配置选项卡解释 Events &#xff1a;事件相关的创建 Task and Queues &#xff1a; 任务与队列的创建 Timers and Semaphores &#xff1a; 定时器和信号量的创建 Mutexes &#xff1a; 互斥量的创建 FreeRTOS Heap…

临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!

生信碱移 IRnet介绍 用于预测病人免疫治疗反应类型的生物过程嵌入神经网络&#xff0c;提供通路、通路交互、基因重要性的多重可解释性评估。 临床实践中常常遇到许多复杂的问题&#xff0c;常见的两种是&#xff1a; 二分类或多分类&#xff1a;预测患者对治疗有无耐受(二分类…

如何在3DMAX中实现大规模项目的地形建模?

在房地产开发项目的环境建模过程中&#xff0c;我们对斜坡和不平坦地形进行建模是一项具有挑战性的任务。 我们已经制定了两种方法来纠正这一点。首先&#xff0c;让我告诉你&#xff0c;我们并没有想过如何使用NURBS来实现这一点&#xff0c;我们通常坚持使用多边形&#xff…

英语每日一段 195

Promising economic indicators won’t instantly reverse the lingering impact of hard times for millions of families, workplace culture expert Jessica Kriegel said. “Perception and reality are sometimes aligned and sometimes not,” Kriegel told Newsweek. “…

2024 数学建模高教社杯 国赛(A题)| “板凳龙”舞龙队 | 建模秘籍文章代码思路大全

铛铛&#xff01;小秘籍来咯&#xff01; 小秘籍团队独辟蹊径&#xff0c;运用等距螺线&#xff0c;多目标规划等强大工具&#xff0c;构建了这一题的详细解答哦&#xff01; 为大家量身打造创新解决方案。小秘籍团队&#xff0c;始终引领着建模问题求解的风潮。 抓紧小秘籍&am…

Java JVM 垃圾回收算法详解

Java 虚拟机&#xff08;JVM&#xff09;是运行 Java 应用程序的核心&#xff0c;它的垃圾回收&#xff08;Garbage Collection, GC&#xff09;机制是 JVM 中非常重要的一个部分。垃圾回收的主要任务是自动管理内存&#xff0c;回收那些不再被使用的对象&#xff0c;从而释放内…

【A题完整论文已出】2024数模国赛A题完整论文+可运行代码参考(无偿分享)

​​​​​​​ A 题 “板凳龙” 闹元宵 摘要&#xff1a; 随着城市节庆活动和传统文化展示的多样化发展&#xff0c;舞龙队的路径规划与速度控制问题成为传统活动表演中的重要研究课题。本文针对舞龙队在节庆活动中的路径优化、调头设计和行进速度控制问题&#xff0c;基…

2024年【金属非金属矿山(露天矿山)安全管理人员】考试题及金属非金属矿山(露天矿山)安全管理人员最新解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 金属非金属矿山&#xff08;露天矿山&#xff09;安全管理人员考试题参考答案及金属非金属矿山&#xff08;露天矿山&#xff09;安全管理人员考试试题解析是安全生产模拟考试一点通题库老师及金属非金属矿山&#xf…

SQL 数据查询

文章目录 3.4.1 单表查询定义特点单表无条件查询单表带条件查询对查询结果进行排序限制查询结果数量 3.4.2 分组查询定义特点&#xff1a;聚集函数GROUP BY短语HAVING子句分组查询小结 3.4.3 连接查询定义特点&#xff1a;等值连接与非等值连接查询自然连接&#xff08;内连接&…