昇思25天学习打卡营第11天|xiaoyushao

        今天分享ResNet50迁移学习

        在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章将使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。

       

目录

        一、 数据准备

        1. 下载数据集

        2. 数据集的目录结构

        二、 加载数据集

        1. 定义执行过程中的全局变量

        2. 加载数据

        3. 数据集可视化

        三、训练模型

        1. 构建ResNet50网络

        2. 固定特征进行训练

        3. 训练和评估

        4. 可视化模型预测


一、 数据准备

        1. 下载数据集

        下载案例所用到的狗与狼分类数据集,数据集中的图像来自于ImageNet,每个分类有大约120张训练图像与30张验证图像。使用download接口下载数据集,并将下载后的数据集自动解压到当前目录下。

from download import downloaddataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip"download(dataset_url, "./datasets-Canidae", kind="zip", replace=True)

        运行结果:

Creating data folder...
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip (11.3 MB)file_sizes: 100%|███████████████████████████| 11.9M/11.9M [00:00<00:00, 116MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./datasets-Canidae
'./datasets-Canidae'

        2. 数据集的目录结构

        二、 加载数据集

        狼狗数据集提取自ImageNet分类数据集,使用mindspore.dataset.ImageFolderDataset接口来加载数据集,并进行相关图像增强操作。

        1. 定义执行过程中的全局变量

# 为执行过程定义一些输入
batch_size = 18                             # 批量大小
image_size = 224                            # 训练图像空间大小
num_epochs = 5                             # 训练周期数
lr = 0.001                                  # 学习率
momentum = 0.9                              # 动量
workers = 4                                 # 并行线程个数

        2. 加载数据

import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision# 数据集目录路径
data_path_train = "./datasets-Canidae/data/Canidae/train/"
data_path_val = "./datasets-Canidae/data/Canidae/val/"# 创建训练数据集
def create_dataset_canidae(dataset_path, usage):"""数据加载"""data_set = ds.ImageFolderDataset(dataset_path,num_parallel_workers=workers,shuffle=True,)# 数据增强操作mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]std = [0.229 * 255, 0.224 * 255, 0.225 * 255]scale = 32if usage == "train":# Define map operations for training datasettrans = [vision.RandomCropDecodeResize(size=image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),vision.RandomHorizontalFlip(prob=0.5),vision.Normalize(mean=mean, std=std),vision.HWC2CHW()]else:# Define map operations for inference datasettrans = [vision.Decode(),vision.Resize(image_size + scale),vision.CenterCrop(image_size),vision.Normalize(mean=mean, std=std),vision.HWC2CHW()]# 数据映射操作data_set = data_set.map(operations=trans,input_columns='image',num_parallel_workers=workers)# 批量操作data_set = data_set.batch(batch_size)return data_setdataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()

        3. 数据集可视化

        从mindspore.dataset.ImageFolderDataset接口中加载的训练数据集返回值为字典,用户可通过 create_dict_iterator 接口创建数据迭代器,使用 next 迭代访问数据集。本章中 batch_size 设为18,所以使用 next 一次可获取18个图像及标签数据。
 

data = next(dataset_train.create_dict_iterator())
images = data["image"]
labels = data["label"]print("Tensor of image", images.shape)
print("Labels:", labels)

        运行结果:

Tensor of image (18, 3, 224, 224)
Labels: [0 1 0 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0]

        对获取到的图像及标签数据进行可视化,标题为图像对应的label名称。

import matplotlib.pyplot as plt
import numpy as np# class_name对应label,按文件夹字符串从小到大的顺序标记label
class_name = {0: "dogs", 1: "wolves"}plt.figure(figsize=(5, 5))
for i in range(4):# 获取图像及其对应的labeldata_image = images[i].asnumpy()data_label = labels[i]# 处理图像供展示使用data_image = np.transpose(data_image, (1, 2, 0))mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])data_image = std * data_image + meandata_image = np.clip(data_image, 0, 1)# 显示图像plt.subplot(2, 2, i+1)plt.imshow(data_image)plt.title(class_name[int(labels[i].asnumpy())])plt.axis("off")plt.show()

        运行结果:

        三、训练模型

        本章使用ResNet50模型进行训练。搭建好模型框架后,通过将pretrained参数设置为True来下载ResNet50的预训练模型并将权重参数加载到网络中。

        1. 构建ResNet50网络

"""定义ResidualBlockBase 类,这个类实现了一个基本的残差块(Residual Block)结构,它是卷积神经网络(CNN)中常用的一种构建块,特别是在构建非常深的网络(如ResNet)时,残差块的主要目的是通过引入“短路连接”(或称为“恒等映射”、“跳跃连接”)来解决深度网络训练过程中的梯度消失或梯度爆炸问题,使得网络能够更容易地学习和优化。
"""
class ResidualBlockBase(nn.Cell):expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等def __init__(self, in_channel: int, out_channel: int,stride: int = 1, norm: Optional[nn.Cell] = None,down_sample: Optional[nn.Cell] = None) -> None:super(ResidualBlockBase, self).__init__()if not norm:self.norm = nn.BatchNorm2d(out_channel)else:self.norm = normself.conv1 = nn.Conv2d(in_channel, out_channel,kernel_size=3, stride=stride,weight_init=weight_init)self.conv2 = nn.Conv2d(in_channel, out_channel,kernel_size=3, weight_init=weight_init)self.relu = nn.ReLU()self.down_sample = down_sampledef construct(self, x):"""ResidualBlockBase construct."""identity = x  # shortcuts分支out = self.conv1(x)  # 主分支第一层:3*3卷积层out = self.norm(out)out = self.relu(out)out = self.conv2(out)  # 主分支第二层:3*3卷积层out = self.norm(out)if self.down_sample is not None:identity = self.down_sample(x)out += identity  # 输出为主分支与shortcuts之和out = self.relu(out)return out
"""定义 ResidualBlock 类,它是用于构建深度神经网络中的一个残差块(Residual Block)。残差块是深度残差网络(ResNet)的核心组成部分,旨在解决深度神经网络在训练过程中出现的梯度消失或梯度爆炸问题,从而允许训练更深的网络。
"""
class ResidualBlock(nn.Cell):expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍def __init__(self, in_channel: int, out_channel: int,stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:super(ResidualBlock, self).__init__()self.conv1 = nn.Conv2d(in_channel, out_channel,kernel_size=1, weight_init=weight_init)self.norm1 = nn.BatchNorm2d(out_channel)self.conv2 = nn.Conv2d(out_channel, out_channel,kernel_size=3, stride=stride,weight_init=weight_init)self.norm2 = nn.BatchNorm2d(out_channel)self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,kernel_size=1, weight_init=weight_init)self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)self.relu = nn.ReLU()self.down_sample = down_sampledef construct(self, x):identity = x  # shortscuts分支out = self.conv1(x)  # 主分支第一层:1*1卷积层out = self.norm1(out)out = self.relu(out)out = self.conv2(out)  # 主分支第二层:3*3卷积层out = self.norm2(out)out = self.relu(out)out = self.conv3(out)  # 主分支第三层:1*1卷积层out = self.norm3(out)if self.down_sample is not None:identity = self.down_sample(x)# 将主分支的输出与shortcuts分支相加,实现残差连接  out += identityout = self.relu(out)return out
"""定义make_layer函数,它负责构建一个由多个残差块(block)组成的网络层。这个函数首先检查是否需要创建下采样层(down_sample),这通常是为了匹配输入和输出的维度或进行特征图的空间降维。然后,它添加第一个残差块(可能需要下采样层),并基于第一个残差块的输出通道数(考虑扩展因子)堆叠剩余的残差块。最后,所有的残差块被封装在一个nn.SequentialCell中,以便可以作为一个整体进行前向传播。
"""
def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],channel: int, block_nums: int, stride: int = 1):down_sample = None  # shortcuts分支# 如果步长不为1或者上一层的输出通道数与当前层首个残差块的期望输出通道数不匹配,则创建下采样层if stride != 1 or last_out_channel != channel * block.expansion:down_sample = nn.SequentialCell([nn.Conv2d(last_out_channel, channel * block.expansion,kernel_size=1, stride=stride, weight_init=weight_init),nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)])# 初始化残差块列表layers = []layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))# 更新输入通道数为当前残差块的输出通道数(考虑扩展因子)in_channel = channel * block.expansion# 堆叠残差网络for _ in range(1, block_nums):layers.append(block(in_channel, channel))return nn.SequentialCell(layers)
# 构建ResNet50网络
from mindspore import load_checkpoint, load_param_into_netclass ResNet(nn.Cell):def __init__(self, block: Type[Union[ResidualBlockBase, ResidualBlock]],layer_nums: List[int], num_classes: int, input_channel: int) -> None:super(ResNet, self).__init__()self.relu = nn.ReLU()# 第一个卷积层,输入channel为3(彩色图像),输出channel为64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, weight_init=weight_init)self.norm = nn.BatchNorm2d(64)# 最大池化层,缩小图片的尺寸self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')# 各个残差网络结构块定义,self.layer1 = make_layer(64, block, 64, layer_nums[0])self.layer2 = make_layer(64 * block.expansion, block, 128, layer_nums[1], stride=2)self.layer3 = make_layer(128 * block.expansion, block, 256, layer_nums[2], stride=2)self.layer4 = make_layer(256 * block.expansion, block, 512, layer_nums[3], stride=2)# 平均池化层self.avg_pool = nn.AvgPool2d()# flattern层self.flatten = nn.Flatten()# 全连接层self.fc = nn.Dense(in_channels=input_channel, out_channels=num_classes)def construct(self, x):x = self.conv1(x)x = self.norm(x)x = self.relu(x)x = self.max_pool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avg_pool(x)x = self.flatten(x)x = self.fc(x)return xdef _resnet(model_url: str, block: Type[Union[ResidualBlockBase, ResidualBlock]],layers: List[int], num_classes: int, pretrained: bool, pretrianed_ckpt: str,input_channel: int):model = ResNet(block, layers, num_classes, input_channel)if pretrained:# 加载预训练模型download(url=model_url, path=pretrianed_ckpt, replace=True)param_dict = load_checkpoint(pretrianed_ckpt)load_param_into_net(model, param_dict)return modeldef resnet50(num_classes: int = 1000, pretrained: bool = False):"ResNet50模型"resnet50_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt"resnet50_ckpt = "./LoadPretrainedModel/resnet50_224_new.ckpt"return _resnet(resnet50_url, ResidualBlock, [3, 4, 6, 3], num_classes,pretrained, resnet50_ckpt, 2048)

        2. 固定特征进行训练

        使用固定特征进行训练的时候,需要冻结除最后一层之外的所有网络层。通过设置 requires_grad == False 冻结参数,以便不在反向传播中计算梯度。

import mindspore as ms
import matplotlib.pyplot as plt
import os
import timenet_work = resnet50(pretrained=True)# 全连接层输入层的大小
in_channels = net_work.fc.in_channels
# 输出通道数大小为狼狗分类数2
head = nn.Dense(in_channels, 2)
# 重置全连接层
net_work.fc = head# 平均池化层kernel size为7
avg_pool = nn.AvgPool2d(kernel_size=7)
# 重置平均池化层
net_work.avg_pool = avg_pool# 冻结除最后一层外的所有参数
for param in net_work.get_parameters():if param.name not in ["fc.weight", "fc.bias"]:param.requires_grad = False# 定义优化器和损失函数
opt = nn.Momentum(params=net_work.trainable_params(), learning_rate=lr, momentum=0.5)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')def forward_fn(inputs, targets):logits = net_work(inputs)loss = loss_fn(logits, targets)return lossgrad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)def train_step(inputs, targets):loss, grads = grad_fn(inputs, targets)opt(grads)return loss# 实例化模型
model1 = train.Model(net_work, loss_fn, opt, metrics={"Accuracy": train.Accuracy()})

        3. 训练和评估

        开始训练模型,与没有预训练模型相比,将节约一大半时间,因为此时可以不用计算部分梯度。保存评估精度最高的ckpt文件于当前路径的./BestCheckpoint/resnet50-best-freezing-param.ckpt。

import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
dataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()num_epochs = 5# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)
best_ckpt_dir = "./BestCheckpoint"
best_ckpt_path = "./BestCheckpoint/resnet50-best-freezing-param.ckpt"# 开始循环训练
print("Start Training Loop ...")best_acc = 0for epoch in range(num_epochs):losses = []net_work.set_train()epoch_start = time.time()# 为每轮训练读入数据for i, (images, labels) in enumerate(data_loader_train):labels = labels.astype(ms.int32)loss = train_step(images, labels)losses.append(loss)# 每个epoch结束后,验证准确率acc = model1.eval(dataset_val)['Accuracy']epoch_end = time.time()epoch_seconds = (epoch_end - epoch_start) * 1000step_seconds = epoch_seconds/step_size_trainprint("-" * 20)print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (epoch+1, num_epochs, sum(losses)/len(losses), acc))print("epoch time: %5.3f ms, per step time: %5.3f ms" % (epoch_seconds, step_seconds))if acc > best_acc:best_acc = accif not os.path.exists(best_ckpt_dir):os.mkdir(best_ckpt_dir)ms.save_checkpoint(net_work, best_ckpt_path)print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "f"save the best ckpt file in {best_ckpt_path}", flush=True)

        运行结果:

Start Training Loop ...
--------------------
Epoch: [  1/  5], Average Train Loss: [0.664], Accuracy: [0.800]
epoch time: 50934.131 ms, per step time: 3638.152 ms
--------------------
Epoch: [  2/  5], Average Train Loss: [0.556], Accuracy: [0.817]
epoch time: 824.633 ms, per step time: 58.902 ms
--------------------
Epoch: [  3/  5], Average Train Loss: [0.510], Accuracy: [0.967]
epoch time: 767.022 ms, per step time: 54.787 ms
--------------------
Epoch: [  4/  5], Average Train Loss: [0.438], Accuracy: [1.000]
epoch time: 714.965 ms, per step time: 51.069 ms
--------------------
Epoch: [  5/  5], Average Train Loss: [0.395], Accuracy: [1.000]
epoch time: 734.045 ms, per step time: 52.432 ms
================================================================================
End of validation the best Accuracy is:  1.000, save the best ckpt file in ./BestCheckpoint/resnet50-best-freezing-param.ckpt

        4. 可视化模型预测

        使用固定特征得到的best.ckpt文件对验证集的狼和狗图像数据进行预测。若预测字体为蓝色即为预测正确,若预测字体为红色则预测错误。

import matplotlib.pyplot as plt
import mindspore as msdef visualize_model(best_ckpt_path, val_ds):net = resnet50()# 全连接层输入层的大小in_channels = net.fc.in_channels# 输出通道数大小为狼狗分类数2head = nn.Dense(in_channels, 2)# 重置全连接层net.fc = head# 平均池化层kernel size为7avg_pool = nn.AvgPool2d(kernel_size=7)# 重置平均池化层net.avg_pool = avg_pool# 加载模型参数param_dict = ms.load_checkpoint(best_ckpt_path)ms.load_param_into_net(net, param_dict)model = train.Model(net)# 加载验证集的数据进行验证data = next(val_ds.create_dict_iterator())images = data["image"].asnumpy()labels = data["label"].asnumpy()class_name = {0: "dogs", 1: "wolves"}# 预测图像类别output = model.predict(ms.Tensor(data['image']))pred = np.argmax(output.asnumpy(), axis=1)# 显示图像及图像的预测值plt.figure(figsize=(5, 5))for i in range(4):plt.subplot(2, 2, i + 1)# 若预测正确,显示为蓝色;若预测错误,显示为红色color = 'blue' if pred[i] == labels[i] else 'red'plt.title('predict:{}'.format(class_name[pred[i]]), color=color)picture_show = np.transpose(images[i], (1, 2, 0))mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])picture_show = std * picture_show + meanpicture_show = np.clip(picture_show, 0, 1)plt.imshow(picture_show)plt.axis('off')plt.show()
visualize_model(best_ckpt_path, dataset_val)

        运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/51059.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文阅读:Deep_Generic_Dynamic_Object_Detection_Based_on_Dynamic_Grid_Maps

目录 概要 Motivation 整体框架流程 技术细节 小结 不足 论文地址&#xff1a;Deep Generic Dynamic Object Detection Based on Dynamic Grid Maps | IEEE Conference Publication | IEEE Xplore 概要 该文章提出了一种基于动态网格图&#xff08;Dynamic Grid Maps&a…

操作系统面试知识点总结4

#来自ウルトラマンメビウス&#xff08;梦比优斯&#xff09; 1 文件系统基础 1.1 文件的相关概念 文件是以计算机硬盘为载体的存储在计算机上的信息集合&#xff0c;可以是文本文档、图片、程序。 文件的结构&#xff1a;数据项、记录、文件&#xff08;有结构文件、无结构式…

橙单前端项目下载编译遇到的问题与解决

今天下载orange-admin前端项目&#xff0c;不过下载下来运行也出现一些问题。 1、运行出现下面一堆错误&#xff0c;如下&#xff1a; 2、对于下面这个错误 error Expected linebreaks to be LF but found CRLF linebreak-style 这就是eslint的报错了&#xff0c;可能是原作者…

Python学习笔记44:游戏篇之外星人入侵(五)

前言 上一篇文章中&#xff0c;我们成功的设置好了游戏窗口的背景颜色&#xff0c;并且在窗口底部中间位置将飞船加载出来了。 今天&#xff0c;我们将通过代码让飞船移动。 移动飞船 想要移动飞船&#xff0c;先要明白飞船位置变化的本质是什么。 通过上一篇文章&#xff0…

新手小白的pytorch学习第十四弹------十一、十二、十三弹卷积神经网络CNN的习题

习题编号目录 No 1No 2No 3No 4No 5No 6No 7No 8No 9No 10No 11No 12No 13 练习题主要就是 写代码&#xff0c;所以这篇文章大部分是代码哟~ No 1 What are 3 areas in industry where computer vision is currently being used? No 2 工业异常检测&#xff0c;目标检测 Sea…

第三十四天 复合选择器之后代选择器

常用复合选择器包括 后代选择器、子选择器、并集选择器、伪类选择器 后代选择器 语法 选择器1 选择器2{属性:属性值;} 出现重复组可以用类名进行区别 后代选择器可以无限套娃 父子等级可以是人为创造的

利用GPT4o Captcha工具和AI技术全面识别验证码

利用GPT4o Captcha工具和AI技术全面识别验证码 &#x1f9e0;&#x1f680; 摘要 GPT4o Captcha工具是一款命令行工具&#xff0c;通过Python和Selenium测试各种类型的验证码&#xff0c;包括拼图、文本、复杂文本和reCAPTCHA&#xff0c;并使用OpenAI GPT-4帮助解决验证码问…

spring IOC DI -- IOC详解

T04BF &#x1f44b;专栏: 算法|JAVA|MySQL|C语言 &#x1faf5; 今天你敲代码了吗 文章目录 4.2 Ioc 详解4.2.1 Bean的存储Controller(控制器存储)Service (服务存储)Repository(仓库存储)Component(组件存储)Configuration(配置存储) 4.2.2 为什么需要这么多类注解?4.2.3方法…

面试重点---快速排序

快排单趟 快速排序是我们面试中的重点&#xff0c;这个知识点也很抽象&#xff0c;需要我们很好的掌握&#xff0c;而且快速排序的代码也是非常重要&#xff0c;需要我们懂了还不行&#xff0c;必须要手撕代码&#xff0c;学的透彻。 在研究快速排序之前&#xff0c;我们首先…

depcheck 前端依赖检查

介绍 depcheck 是一款用于检测项目中 未使用依赖项 的工具。 depcheck 通过扫描项目文件&#xff0c;帮助你找出未被引用的依赖&#xff0c;从而优化项目。 优势&#xff1a; 简单易用: 仅需几个简单的命令&#xff0c;就能够扫描并列出未使用的依赖项&#xff0c;让你快速了…

GeneCompass:跨物种大模型用于破解基因调控机理

GeneCompass是第一个基于知识的跨物种基础模型&#xff0c;该模型预先训练了来自人类和小鼠的超过1.2亿个单细胞转录组。在预训练过程中&#xff0c;GeneCompass有效整合了四种生物先验知识&#xff0c;以自监督的方式增强了对基因调控机制的理解。对多个下游任务进行微调&…

PlatformIO+ESP32S3学习:通过WIFI与和风天气API获取指定地点的天气情况并显示

1. 硬件准备 你只需要有一个ESP32S3开发板。我目前使用的是&#xff1a; 购买地址&#xff1a;立创ESP32S3R8N8 开发板 2. 和风天气API 2.1. 和风天气介绍 和⻛天气是中国领先的气象科技服务商、国家高新技术 企业&#xff0c;致力于运用先进气象模型结合大数据、人工智能 技术…

成为git砖家(2): gitk 介绍

大家好&#xff0c;我是白鱼。这篇我们介绍 gitk。 gitk 和 fork 界面对比 当我们在 macOS 上执行 brew install git 后&#xff0c; 得到了 git 命令行工具。 然而这条命令并不会安装 gitk. gitk 是 git 自带的图形化界面工具&#xff0c;也可以称为“穷人版 fork”&#xf…

美国演员工会和电视广播艺人工会针对电子游戏发行商的罢工于 7 月 26 日举行

美国演员工会&#xff08;SAG-AFTRA&#xff09;正在对电子游戏发行商进行罢工&#xff0c;以保护演员不被人工智能所利用。经过一年半的谈判&#xff0c;双方仍未达成协议。该工会希望确保人工智能不会被用作利用大型游戏中演员的手段。 他们在网站上声明&#xff0c;“从事电…

搭建自己的金融数据源和量化分析平台(三):读取深交所股票列表

深交所的股票信息读取比较简单&#xff1a; 看上图&#xff0c;爬虫读取到下载按钮的链接之后发起请求&#xff0c;得到XLS文件后直接解析就可以了。 这里放出深交所爬虫模块的代码&#xff1a; # -*- coding: utf-8 -*- # 深圳交易所爬虫 import osimport pandas as pd imp…

fastapi教程(四):做出响应

请求体现的是后端的数据服务能力&#xff0c;而响应体现的是后端向前端的数据展示能力。 一&#xff0c;一个完整的web响应应该包含哪些东西 一个完整的 Web 响应通常包含以下几个主要部分&#xff1a; 1. 状态行- HTTP 版本- 状态码- 状态消息例如&#xff1a;HTTP/1.1 200…

全开源收银系统源码-支付通道

1.收银系统开发语言 核心开发语言: PHP、HTML5、Dart后台接口: PHP7.3后合管理网站: HTML5vue2.0element-uicssjs线下收银台&#xff08;安卓/PC收银、安卓自助收银&#xff09;: Dart3框架&#xff1a;Flutter 3.19.6助手: uniapp商城: uniapp 2.支付通道 智慧新零售收银系统…

一下午连续故障两次,谁把我们接口堵死了?!

唉。。。 大家好&#xff0c;我是程序员鱼皮。又来跟着鱼皮学习线上事故的处理经验了喔&#xff01; 事故现场 周一下午&#xff0c;我们的 编程导航网站 连续出现了两次故障&#xff0c;每次持续半小时左右&#xff0c;现象是用户无法正常加载网站&#xff0c;一直转圈圈。 …

小白学习webgis的详细路线

推荐打开boss直聘搜索相关岗位&#xff0c;查看岗位要求&#xff0c;对症下药是最快的。 第一阶段&#xff1a;基础知识准备 计算机基础 操作系统&#xff1a;理解Windows、Linux或macOS等操作系统的基本操作&#xff0c;学会使用命令行界面。网络基础&#xff1a;掌握TCP/I…