Flink入门(更新中)

目录

1.1 基本概念

1.1.1 flink简介

1.2 flink编程模版

1.3 常用概念

1.2.1 datastream

1.2.2 算子、Task

1.2.3 多流操作

1.2.6 时间语义

二、Flink编程实战(Java)

2.1 wordcount


1.1 基本概念

1.1.1 flink简介

1.图片介绍

性能:

  1. 低延迟
  2. 高吞吐
  3. 内存计算

运维:

  1. 弹性实施部署机制
  2. 高可用配置
  3. 保存点恢复机制

准确性保证:

  1. exactly-once 状态一致性
  2. 事件时间处理
  3. 专业的迟到数据处理

2.对比mapreduce

相似性

  1. 数据处理框架:都是大数据处理框架,都提供了一套编程模型和API,使得开发人员能处理大规模数据集。

  2. 分布式处理:都支持分布式处理,即数据可以在多个节点上并行处理。在MapReduce中,作业被拆分成多个map任务和reduce任务,这些任务在集群的多个节点上并行执行。在Flink中,数据流也被分割成多个部分,并在不同的任务(Task)中并行处理。

  3. 数据分区和聚合:在MapReduce中,map阶段的数据通常会被分区(sharding),并在reduce阶段进行聚合(如求和、计数等)。在Flink中,也有类似的机制,比如使用keyBy算子对数据进行分区,然后使用聚合函数(如summax等)对分区内的数据进行处理。

  4. 容错机制:都提供了容错机制,以确保在节点故障或数据丢失时能够恢复作业的执行。MapReduce通过检查点(checkpointing)和重试机制来实现容错,而Flink则提供了包括基于状态的容错和精确一次(exactly-once)语义的保证。

区别:

  1. 处理模式MapReduce是批处理框架,处理的是静态数据集(即数据在作业开始之前就已经存在)。而Flink是流处理框架,它处理的是实时数据流(即数据是持续不断地产生的)。

  2. 实时性:Flink支持低延迟的实时数据处理,能够处理毫秒级甚至微秒级的数据。而MapReduce则更适合于离线批处理场景,其处理延迟通常较高。

  3. 状态管理:Flink提供了更强大的状态管理能力,它能够在任务之间或故障恢复后保持状态的一致性,且API更丰富。

1.2 flink编程模版

1.万卷不离其宗!!!运行模型通常包括三个部分:Source(数据源)、Transformation(转换操作)、Sink(输出)。

  1. 获取一个编程之行入口环境env
  2. 通过数据源组建,加载,创建datastream
  3. 对datastream调用各种处理算子表达计算逻辑
  4. 通过sink算子指定计算结果指定计算结果的输出方式
  5. 在env上触发程序提交执行

2.添加依赖

对于Maven项目,在pom.xml文件中添加<dependency>元素,代码举例:

<dependencies>  <!-- Flink核心库 -->  <dependency>  <groupId>org.apache.flink</groupId>  <artifactId>flink-core</artifactId>  <version>你的Flink版本号</version>  <!-- 通常这个依赖的作用域设置为provided,但根据你的项目需求可以调整 -->  <!-- <scope>provided</scope> -->  </dependency>  <!-- Flink流处理库(Java API) -->  <dependency>  <groupId>org.apache.flink</groupId>  <artifactId>flink-streaming-java_你的Scala版本</artifactId>  <version>你的Flink版本号</version>  <!-- 如果在IDE中运行,可能需要将作用域设置为compile或runtime -->  <!-- <scope>compile</scope> -->  </dependency>  <!-- 如果你还需要使用Table API或SQL,则可以添加以下依赖 -->  <!-- Flink Table API和SQL的Java桥接库 -->  <dependency>  <groupId>org.apache.flink</groupId>  <artifactId>flink-table-api-java-bridge_你的Scala版本</artifactId>  <version>你的Flink版本号</version>  <!-- 通常这个依赖的作用域也设置为provided -->  <!-- <scope>provided</scope> -->  </dependency>  <!-- 注意:上述示例中的“你的Flink版本号”和“你的Scala版本”需要替换为实际的版本号 -->  <!-- Flink的版本号可以从Apache Flink的官方网站或Maven中央仓库获取 -->  <!-- Scala的版本号取决于你使用的Flink版本和Scala兼容性 -->  
</dependencies>

1.3 常用概念

1.2.1 datastream

  1. DataStream代表一个数据流,它可以是无界的,也可以是有界的;
  2. DataStream类似于spark的rdd,它是不可变的(immutable);
  3. 无法对一个datastream进行自由的添加或删除或修改元素;
  4. 只能通过算子对datastream中的数据进行转换,将一个datastream转成另一个datastream;
  5. datastream可以通过source算子加载、映射外部数据而来;或者从已存在的datastream转换而来

1.2.2 算子、Task

1.算子(Operator)可以被通俗地理解为一种可以调用的函数或操作,它们对数据进行处理或转换。不过,与传统的函数相比,Flink的算子是在分布式环境中执行的,它们能够处理无限的数据流或有限的数据集。

举例:

  • Window算子:Window算子就像是一个定时闹钟和一堆小盘子。你设置了时间间隔(比如每分钟、每小时),当时间到了,闹钟就会响,然后你把这段时间内收集到的所有食材(数据)放到一个小盘子里进行统一处理。这样可以让你看到数据随时间变化的趋势。

  • Filter算子:Filter算子就像是一个筛子。你把食材(数据)倒进筛子里,只有满足特定条件(比如大小、颜色等)的食材才能通过筛子继续向下流动。这个过程中,不满足条件的食材就被淘汰了。
  • Sink算子(Sink Operator):是数据流处理管道中的一个重要组成部分,它负责将处理后的数据输出到外部系统或存储中。Sink是数据流处理的终点,它接收来自上游算子的数据,并将其发送到目的地,如文件系统、数据库、消息队列等。

2.task,subtask

  1. flink程序中,每一个算子都可以成为一个独立任务(task);
  2. flink程序中,视上下游算子间数据分发规则、并行度、共享槽位设置,可组成算子链成为一个task
  3. 每个任务在运行时都可拥有多个并行的运行实例(subTask);
  4. 且每个算子任务的并行度都可以在代码中显式设置;

3. Task和算子的联系

  1. 共同作用于数据流处理:Task和算子都是处理数据流的关键组成部分。Task是执行单元,而算子定义了数据流上的具体操作。
  2. 优化与执行:为了提高处理效率和减少资源消耗,Flink会将多个算子链接(chain)成一个Task,在同一个线程中执行。

1.2.3 多流操作

多流操作指的是在数据流处理过程中,对两个或多个数据流进行各种转换和合并的操作。这些操作使得Flink能够处理复杂的数据流场景,如数据分流(将一条数据流拆分成多条)、数据合流(将多条数据流合并成一条)以及双流联结(基于特定条件将两条数据流联结起来)等。

1.2.6 时间语义

1. 事件时间(Event Time)

事件时间是指数据本身所携带的时间戳,即数据实际发生或产生的时间。你可以把它想象成每个数据项都自带了一个“出生证”,上面写着它是什么时候被创造出来的。在Flink中,事件时间允许我们按照数据实际发生的时间顺序来处理数据,即使这些数据在系统中是乱序到达的。

2. 处理时间(Processing Time)

处理时间是指数据在Flink系统中被处理时所在机器的系统时间。你可以把它想象成每个处理节点都有一个“本地时钟”,这个时钟告诉节点当前是什么时候,并且所有基于时间的操作都使用这个时钟的时间。

3. 摄入时间(Ingestion Time)

摄入时间是指数据进入Flink系统的时间戳,即数据被Flink Source算子接收的时间。你可以把它想象成Flink系统有一个“大门”,所有数据都要通过这个大门进入,而大门上有一个“计时器”,记录着每个数据项进门的时间。

二、Flink编程实战(Java)

2.1 wordcount

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/50661.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenAI推出SearchGPT:革新搜索体验的新工具

引言 原文链接 在信息爆炸的时代&#xff0c;搜索引擎已经成为人们日常生活中不可或缺的工具。然而&#xff0c;传统的搜索引擎在理解复杂查询和提供准确答案方面仍有许多不足。为了解决这一问题&#xff0c;OpenAI与20240725推出了SearchGPT原型&#xff0c;将生成式AI与传统…

kafka源码阅读-ReplicaStateMachine(副本状态机)解析

概述 Kafka源码包含多个模块&#xff0c;每个模块负责不同的功能。以下是一些核心模块及其功能的概述&#xff1a; 服务端源码 &#xff1a;实现Kafka Broker的核心功能&#xff0c;包括日志存储、控制器、协调器、元数据管理及状态机管理、延迟机制、消费者组管理、高并发网络…

Vue常用指令及其生命周期

作者&#xff1a;CSDN-PleaSure乐事 欢迎大家阅读我的博客 希望大家喜欢 目录 1.常用指令 1.1 v-bind 1.2 v-model 注意事项 1.3 v-on 注意事项 1.4 v-if / v-else-if / v-else 1.5 v-show 1.6 v-for 无索引 有索引 生命周期 定义 流程 1.常用指令 Vue当中的指令…

远程项目调试-informer2020

informer2020 Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting(原文&#xff09;Informer 是一个基于Transformer的模型&#xff0c;是为了应对长依赖关系而开发的。本文的主要主题是序列预测。序列预测可以在任何具有不断变化的数据的地方…

Linux——管理本地用户和组(详细介绍了Linux中用户和组的概念及用法)

目录 一、用户和组概念 &#xff08;一&#xff09;、用户的概念 &#xff08;二&#xff09;、组的概念 补充组 主要组 二、获取超级用户访问权限 &#xff08;一&#xff09;、su 命令和su -命令 &#xff08; 二&#xff09;、sudo命令 三、管理本地用户账户 &…

ERROR: Cannot find command ‘git’- do you have ‘git’ installed and in your PATH?

ERROR: Cannot find command ‘git’- do you have ‘git’ installed and in your PATH? 目录 ERROR: Cannot find command ‘git’- do you have ‘git’ installed and in your PATH? 【常见模块错误】 【解决方案】 欢迎来到英杰社区https://bbs.csdn.net/topics/61780…

Transformer自然语言处理实战pdf阅读

一.第一章 欢迎来到transformer的世界 1.解码器-编码器框架 在Transformer出现之前&#xff0c;NLP的最新技术是LSTM等循环架构。这些架 构通过在神经网络连接使用反馈循环&#xff0c;允许信息从一步传播到另一 步&#xff0c;使其成为对文本等序列数据进行建模的理想选择。如…

多模态大模型应用中的Q-Former是什么?

多模态大模型应用中的Q-Former是什么&#xff1f; Q-Former是一种新型的神经网络架构&#xff0c;专注于通过查询&#xff08;Query&#xff09;机制来改进信息检索和表示学习。在这篇博客中&#xff0c;我们将详细探讨Q-Former的工作原理、应用场景&#xff0c;并在必要时通过…

pyqt designer使用spliter

1、在designer界面需要使用spliter需要父界面不使用布局&#xff0c;减需要分割两个模块选中&#xff0c;再点击spliter分割 2、在分割后&#xff0c;再对父界面进行布局设置 3、对于两边需要不等比列放置的&#xff0c;需要套一层 group box在最外层进行分割

大数据学习之Flink基础

Flink基础 1、系统时间与时间时间 系统时间&#xff08;处理时间&#xff09; 在Sparksreaming的任务计算时&#xff0c;使用的是系统时间。 假设所用窗口为滚动窗口&#xff0c;大小为5分钟。那么每五分钟&#xff0c;都会对接收的数据进行提交任务. 但是&#xff0c;这里有…

GoogleCTF2023 Writeup

GoogleCTF2023 Writeup Misc NPC Crypto LEAST COMMON GENOMINATOR? Web UNDER-CONSTRUCTION NPC A friend handed me this map and told me that it will lead me to the flag. It is confusing me and I don’t know how to read it, can you help me out? Attach…

VSCode切换默认终端

我的VSCode默认终端为PowerShell&#xff0c;每次新建都会自动打开PowerShell。但是我想让每次都变为cmd&#xff0c;也就是Command Prompt 更改默认终端的操作方法如下&#xff1a; 键盘调出命令面板&#xff08;CtrlShiftP&#xff09;中,输入Terminal: Select Default Prof…

Java 中的Stream流

Stream流就像工厂中的流水线操作。 如何使用Stream&#xff1f; 1、首先要获取Stream流&#xff0c;那么如何获取呢? 对于不同的数据&#xff0c;有不同的获取方法。 ①单列集合 方法名说明default Stream<E> stream()Collection接口中的默认方法 所以实现了Colle…

Multi Range Read与Covering Index是如何优化回表的?

上篇文章末尾我们提出一个问题&#xff1a;有没有什么办法可以尽量避免回表或让回表的开销变小呢&#xff1f; 本篇文章围绕这个问题提出解决方案&#xff0c;一起来看看MySQL是如何优化的 回表 为什么会发生回表&#xff1f; 因为使用的索引并没有整条记录的所有信息&…

DataEase一键部署:轻松搭建数据可视化平台

DataEase是一个开源的数据可视化和分析工具&#xff0c;旨在帮助用户轻松创建和共享数据仪表盘。它支持多种数据源&#xff0c;包括关系型数据库&#xff0c;文件数据源&#xff0c;NoSQL数据库等&#xff0c;提供强大的数据查询、处理和可视化功能。DataEase 不仅是一款数据可…

VMware虚拟机中CentOS7自定义ip地址并且固定ip

配置固定ip(虚拟机) 前提&#xff1a;虚拟机网络配置成&#xff0c;自定义网络并选择VMnet8(NAT 模式) 操作(如下图)&#xff1a;点击虚拟机–》设置–》–》硬件–》网络适配器–》自定义&#xff1a;特定虚拟网络–》选择&#xff1a;VMnet8(NAT 模式) 虚拟机网络设置 需要记…

【漏洞复现】Jenkins CLI 接口任意文件读取漏洞(CVE-2024-23897)

漏洞简介 Jenkins是一款基于JAVA开发的开源自动化服务器。 Jenkins使用args4j来解析命令行输入&#xff0c;并支持通过HTTP、WebSocket等协议远程传入命令行参数。在args4j中&#xff0c;用户可以通过字符来加载任意文件&#xff0c;这导致攻击者可以通过该特性来读取服务器上…

论文快过(图像配准|Coarse_LoFTR_TRT)|适用于移动端的LoFTR算法的改进分析 1060显卡上45fps

项目地址&#xff1a;https://github.com/Kolkir/Coarse_LoFTR_TRT 创建时间&#xff1a;2022年 相关训练数据&#xff1a;BlendedMVS LoFTR [19]是一种有效的深度学习方法&#xff0c;可以在图像对上寻找合适的局部特征匹配。本文报道了该方法在低计算性能和有限内存条件下的…

【PyTorch】基于LSTM网络的气温预测模型实现

假设CSV文件名为temperature_data.csv&#xff0c;其前五行和标题如下&#xff1a; 这里&#xff0c;我们只使用Temperature列进行单步预测。以下是整合的代码示例&#xff1a; import pandas as pd import numpy as np import torch import torch.nn as nn import torch.op…

RocketMQ消息短暂而又精彩的一生(荣耀典藏版)

目录 前言 一、核心概念 二、消息诞生与发送 2.1.路由表 2.2.队列的选择 2.3.其它特殊情况处理 2.3.1.发送异常处理 2.3.2.消息过大的处理 三、消息存储 3.1.如何保证高性能读写 3.1.1.传统IO读写方式 3.2零拷贝 3.2.1.mmap() 3.2.2sendfile() 3.2.3.CommitLog …