Apache Doris + Paimon 快速搭建指南|Lakehouse 使用手册(二)

湖仓一体(Data Lakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中,Apache Doris 持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。

为便于用户快速入门,我们将通过系列文章介绍 Apache Doris 与各类主流数据湖格式及存储系统的湖仓一体架构搭建指南,包括 Hudi、Iceberg、Paimon、OSS、Delta Lake、Kudu、BigQuery 等。目前,我们已经发布了 Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一),通过此文你可了解到在 Docker 环境下,如何快速搭建 Apache Doris + Apache Hudi 的测试及演示环境。

本文我们将再续前言,为大家介绍 Lakehouse 使用手册(二)之 Apache Doris + Apache Paimon 搭建指南。

Apache Doris + Apache Paimon

Apache Paimon 是一种数据湖格式,并创新性地将数据湖格式和 LSM 结构的优势相结合,成功将高效的实时流更新能力引入数据湖架构中,这使得 Paimon 能够实现数据的高效管理和实时分析,为构建实时湖仓架构提供了强大的支撑。

为了充分发挥 Paimon 的能力,提高对 Paimon 数据的查询效率,Apache Doris 对 Paimon 的多项最新特性提供了原生支持:

  • 支持 Hive Metastore、FileSystem 等多种类型的 Paimon Catalog。
  • 原生支持 Paimon 0.6 版本发布的 Primary Key Table Read Optimized 功能。
  • 原生支持 Paimon 0.8 版本发布的 Primary Key Table Deletion Vector 功能。

基于 Apache Doris 的高性能查询引擎和 Apache Paimon 高效的实时流更新能力,用户可以实现:

  • 数据实时入湖: 借助 Paimon 的 LSM-Tree 模型,数据入湖的时效性可以降低到分钟级;同时,Paimon 支持包括聚合、去重、部分列更新在内的多种数据更新能力,使得数据流动更加灵活高效。
  • 高性能数据处理分析: Paimon 所提供的 Append Only Table、Read Optimized、Deletion Vector 等技术,可与 Doris 强大的查询引擎对接,实现湖上数据的快速查询及分析响应。

未来 Apache Doris 将会逐步支持包括 Time Travel、增量数据读取在内的 Apache Paimon 更多高级特性,共同构建统一、高性能、实时的湖仓平台。

本文将会再 Docker 环境中,为读者讲解如何快速搭建 Apache Doris + Apache Paimon 测试 & 演示环境,并展示各功能的使用操作。

使用指南

本文涉及脚本&代码从该地址获取:https://github.com/apache/doris/tree/master/samples/datalake/iceberg_and_paimon

01 环境准备

本文示例采用 Docker Compose 部署,组件及版本号如下:

Docker Compose 部署组件及版本号.png

Apache Doris 2.1.5 为全新发布:| 下载地址 | Release Notes

02 环境部署

1. 启动所有组件

bash ./start_all.sh

2. 启动后,可以使用如下脚本,登陆 Flink 命令行或 Doris 命令行:

bash ./start_flink_client.sh
bash ./start_doris_client.sh

03 数据准备

首先登陆 Flink 命令行后,可以看到一张预构建的表。表中已经包含一些数据,我们可以通过 Flink SQL 进行查看。

Flink SQL> use paimon.db_paimon;
[INFO] Execute statement succeed.Flink SQL> show tables;
+------------+
| table name |
+------------+
|   customer |
+------------+
1 row in setFlink SQL> show create table customer;
+------------------------------------------------------------------------+
|                                                                 result |
+------------------------------------------------------------------------+
| CREATE TABLE `paimon`.`db_paimon`.`customer` (`c_custkey` INT NOT NULL,`c_name` VARCHAR(25),`c_address` VARCHAR(40),`c_nationkey` INT NOT NULL,`c_phone` CHAR(15),`c_acctbal` DECIMAL(12, 2),`c_mktsegment` CHAR(10),`c_comment` VARCHAR(117),CONSTRAINT `PK_c_custkey_c_nationkey` PRIMARY KEY (`c_custkey`, `c_nationkey`) NOT ENFORCED
) PARTITIONED BY (`c_nationkey`)
WITH ('bucket' = '1','path' = 's3://warehouse/wh/db_paimon.db/customer','deletion-vectors.enabled' = 'true'
)|
+-------------------------------------------------------------------------+
1 row in setFlink SQL> desc customer;
+--------------+----------------+-------+-----------------------------+--------+-----------+
|         name |           type |  null |                         key | extras | watermark |
+--------------+----------------+-------+-----------------------------+--------+-----------+
|    c_custkey |            INT | FALSE | PRI(c_custkey, c_nationkey) |        |           |
|       c_name |    VARCHAR(25) |  TRUE |                             |        |           |
|    c_address |    VARCHAR(40) |  TRUE |                             |        |           |
|  c_nationkey |            INT | FALSE | PRI(c_custkey, c_nationkey) |        |           |
|      c_phone |       CHAR(15) |  TRUE |                             |        |           |
|    c_acctbal | DECIMAL(12, 2) |  TRUE |                             |        |           |
| c_mktsegment |       CHAR(10) |  TRUE |                             |        |           |
|    c_comment |   VARCHAR(117) |  TRUE |                             |        |           |
+--------------+----------------+-------+-----------------------------+--------+-----------+
8 rows in setFlink SQL> select * from customer order by c_custkey limit 4;
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
| c_custkey |             c_name |                      c_address | c_nationkey |         c_phone | c_acctbal | c_mktsegment |                      c_comment |
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
|         1 | Customer#000000001 |              IVhzIApeRb ot,c,E |          15 | 25-989-741-2988 |    711.56 |     BUILDING | to the even, regular platel... |
|         2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak |          13 | 23-768-687-3665 |    121.65 |   AUTOMOBILE | l accounts. blithely ironic... |
|         3 | Customer#000000003 |                   MG9kdTD2WBHm |           1 | 11-719-748-3364 |   7498.12 |   AUTOMOBILE |  deposits eat slyly ironic,... |
|        32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tl... |          15 | 25-430-914-2194 |   3471.53 |     BUILDING | cial ideas. final, furious ... |
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
4 rows in set

04 数据查询

如下所示,Doris 集群中已经创建了名为paimon 的 Catalog(可通过 SHOW CATALOGS 查看)。以下为该 Catalog 的创建语句:

-- 已创建,无需执行
CREATE CATALOG `paimon` PROPERTIES ("type" = "paimon","warehouse" = "s3://warehouse/wh/","s3.endpoint"="http://minio:9000","s3.access_key"="admin","s3.secret_key"="password","s3.region"="us-east-1"
);

你可登录到 Doris 中查询 Paimon 的数据:

mysql> use paimon.db_paimon;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -ADatabase changed
mysql> show tables;
+---------------------+
| Tables_in_db_paimon |
+---------------------+
| customer            |
+---------------------+
1 row in set (0.00 sec)mysql> select * from customer order by c_custkey limit 4;
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
| c_custkey | c_name             | c_address                             | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                              |
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
|         1 | Customer#000000001 | IVhzIApeRb ot,c,E                     |          15 | 25-989-741-2988 |    711.56 | BUILDING     | to the even, regular platelets. regular, ironic epitaphs nag e                                         |
|         2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak        |          13 | 23-768-687-3665 |    121.65 | AUTOMOBILE   | l accounts. blithely ironic theodolites integrate boldly: caref                                        |
|         3 | Customer#000000003 | MG9kdTD2WBHm                          |           1 | 11-719-748-3364 |   7498.12 | AUTOMOBILE   |  deposits eat slyly ironic, even instructions. express foxes detect slyly. blithely even accounts abov |
|        32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tlp2iQ6ZcO3J |          15 | 25-430-914-2194 |   3471.53 | BUILDING     | cial ideas. final, furious requests across the e                                                       |
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
4 rows in set (1.89 sec)

05 读取增量数据

我们可以通过 Flink SQL 更新 Paimon 表中的数据:

Flink SQL> update customer set c_address='c_address_update' where c_nationkey = 1;
[INFO] Submitting SQL update statement to the cluster...
[INFO] SQL update statement has been successfully submitted to the cluster:
Job ID: ff838b7b778a94396b332b0d93c8f7ac

等 Flink SQL 执行完毕后,在 Doris 中可直接查看到最新的数据:

mysql> select * from customer where c_nationkey=1 limit 2;
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
| c_custkey | c_name             | c_address       | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                              |
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
|         3 | Customer#000000003 | c_address_update |           1 | 11-719-748-3364 |   7498.12 | AUTOMOBILE   |  deposits eat slyly ironic, even instructions. express foxes detect slyly. blithely even accounts abov |
|       513 | Customer#000000513 | c_address_update |           1 | 11-861-303-6887 |    955.37 | HOUSEHOLD    | press along the quickly regular instructions. regular requests against the carefully ironic s          |
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
2 rows in set (0.19 sec)

Benchmark

我们在 Paimon(0.8)版本的 TPCDS 1000 数据集上进行了简单的测试,分别使用了 Apache Doris 2.1.5 版本和 Trino 422 版本,均开启 Primary Key Table Read Optimized 功能。

Doris vs Trino Benchmark.png

从测试结果可以看到,Doris 在标准静态测试集上的平均查询性能是 Trino 的 3 -5 倍,后续我们将针对 Deletion Vector 进行优化,进一步提升真实业务场景下的查询效率。

查询优化

对于基线数据来说,Apache Paimon 在 0.6 版本中引入 Primary Key Table Read Optimized 功能后,使得查询引擎可以直接访问底层的 Parquet/ORC 文件,大幅提升了基线数据的读取效率。对于尚未合并的增量数据( INSERT、UPDATE 或 DELETE 所产生的数据增量)来说,可以通过 Merge-on-Read 的方式进行读取。此外,Paimon 在 0.8 版本中还引入的 Deletion Vector 功能,能够进一步提升查询引擎对增量数据的读取效率。

Apache Doris 支持通过原生的 Reader 读取 Deletion Vector 并进行 Merge on Read,我们通过 Doris 的 EXPLAIN 语句,来演示在一个查询中,基线数据和增量数据的查询方式。

mysql> explain verbose select * from customer where c_nationkey < 3;
+------------------------------------------------------------------------------------------------------------------------------------------------+
| Explain String(Nereids Planner)                                                                                                                |
+------------------------------------------------------------------------------------------------------------------------------------------------+
| ...............                                                                                                                                |
|                                                                                                                                                |
|   0:VPAIMON_SCAN_NODE(68)                                                                                                                      |
|      table: customer                                                                                                                           |
|      predicates: (c_nationkey[#3] < 3)                                                                                                         |
|      inputSplitNum=4, totalFileSize=238324, scanRanges=4                                                                                       |
|      partition=3/0                                                                                                                             |
|      backends:                                                                                                                                 |
|        10002                                                                                                                                   |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=1/bucket-0/data-15cee5b7-1bd7-42ca-9314-56d92c62c03b-0.orc start: 0 length: 66600 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=1/bucket-0/data-5d50255a-2215-4010-b976-d5dc656f3444-0.orc start: 0 length: 44501 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=2/bucket-0/data-e98fb7ef-ec2b-4ad5-a496-713cb9481d56-0.orc start: 0 length: 64059 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=0/bucket-0/data-431be05d-50fa-401f-9680-d646757d0f95-0.orc start: 0 length: 63164 |
|      cardinality=18751, numNodes=1                                                                                                             |
|      pushdown agg=NONE                                                                                                                         |
|      paimonNativeReadSplits=4/4                                                                                                                |
|      PaimonSplitStats:                                                                                                                         |
|        SplitStat [type=NATIVE, rowCount=1542, rawFileConvertable=true, hasDeletionVector=true]                                                 |
|        SplitStat [type=NATIVE, rowCount=750, rawFileConvertable=true, hasDeletionVector=false]                                                 |
|        SplitStat [type=NATIVE, rowCount=750, rawFileConvertable=true, hasDeletionVector=false]                                                 |
|      tuple ids: 0
| ...............                                                                                                           |                                                                                                  |
+------------------------------------------------------------------------------------------------------------------------------------------------+
67 rows in set (0.23 sec)

可以看到,对于刚才通过 Flink SQL 更新的表,包含 4 个分片,并且全部分片都可以通过 Native Reader 进行访问(paimonNativeReadSplits=4/4)。并且第一个分片的hasDeletionVector的属性为 true,表示该分片有对应的 Deletion Vector,读取时会根据 Deletion Vector 进行数据过滤。

结束语

以上是基于 Apache Doris 与 Apache Paimon 快速搭建测试 / 演示环境的详细指南,后续我们还将陆续推出 Apache Doris 与各类主流数据湖格式及存储系统构建湖仓一体架构的系列指南,包括 Iceberg、OSS、Delta Lake 等,欢迎持续关注。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/50289.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

32单片机开发bootloader程序

一&#xff0c;单片机为什么要使用bootloader 1、使用bootloader的好处 1) 程序隔离&#xff1a;可以同时存在多个程序&#xff0c;只要flash空间够大&#xff0c;或者通过外挂flash&#xff0c;可以实现多个程序共存&#xff0c;在多个程序之间切换使用。 2&#xff09;方便程…

OpenHarmony 入门——初识JS/ArkTS 侧的“JNI” NAPI 常见的函数详解(二)

引言 前面一篇文章OpenHarmony 入门——初识JS/ArkTS 侧的“JNI” NAPI&#xff08;一&#xff09;介绍了NAPI的基础理论知识&#xff0c;今天重点介绍下NAPI中重要的函数。 一、Native 侧的NAPI的相关的C函数 以下面一段代码为例介绍下主要函数的功能和用法。 napi_value …

系统模块时序图的重要性:解锁系统模块交互的全景视图

在复杂的系统开发中,理解和管理不同模块之间的交互是成功的关键。时序图是一种有效的工具,可以帮助我们清晰地展示这些交互,提升设计和开发的效率。本文将深入探讨系统模块之间的时序图,并通过实例展示其实际应用。 1. 什么是系统模块之间的时序图? 系统模块之间的时序图…

Layui表格向下滑动时表头固定悬浮

记录&#xff1a;Layui表格向下滑动时表头固定悬浮 使用table的height参数&#xff1a; 示例 //“方法级渲染”配置方式 table.render({ //其它参数在此省略height: 315 //固定值 }); table.render({ //其它参数在此省略height: full-20 //高度最大化减去差值 }); 等价于&am…

项目的小结

1.实现实时聊天 1.服务端建立一个ConcurrentHashMap<> 用来存储在线用户&#xff0c;用户账号和socket然后&#xff0c;如果有个人发了信息&#xff0c;就去数据库中查询&#xff0c;然后根据这个在线用户进行传递信息 服务端框架&#xff1a; public class ServerMain {…

git sendemail使用

教程参考&#xff1a; git-send-email - 以电子邮件形式发送补丁集 1、安装git-email 2、配置 SMTP 服务器 git config --global sendemail.smtpserver smtp.163.com git config --global sendemail.smtpserverport 465 git config --global sendemail.smtpuser xxxxxx163.c…

Hyperledger Fabric 网络体验 - 网络启动过程概览

进入fabric-samples/test-network目录&#xff0c;执行指令&#xff1a; ./network.sh up -i 2.5执行完指令能看到fabric已经启动。 作为第一次Fabric网络体验&#xff0c;网络启动主要包含三个操作&#xff0c;分别是生成配置文件、启动网络和操作网络。 配置文件 使用cr…

传知代码-智慧医疗:纹理特征VS卷积特征(论文复现)

代码以及视频讲解 本文所涉及所有资源均在传知代码平台可获取 论文链接&#xff1a;https://www.sciencedirect.com/science/article/abs/pii/S1076633223003537?__cf_chl_rt_tkJ9Aipfxyk5d.leu48P20ePFNd4B2aunaSmzVpXCg.7g-1721292386-0.0.1.1-6249 论文概述 今天我们把视线…

【系统架构设计师】十八、信息系统架构设计理论与实践②

目录 四、企业信息系统的总体框架 4.1 战略系统 4.2 业务系统 4.3 应用系统 4.4 企业信息基础设施 4.5 业务流程重组BPR 4.6 业务流程管理BPM 五、信息系统架构设计方法 5.1 行业标准的体系架构框架 5.2 架构开发方法 5.3 信息化总体架构方法 5.4 信息化建设生命周…

Golang | Leetcode Golang题解之第290题单词规律

题目&#xff1a; 题解&#xff1a; func wordPattern(pattern string, s string) bool {word2ch : map[string]byte{}ch2word : map[byte]string{}words : strings.Split(s, " ")if len(pattern) ! len(words) {return false}for i, word : range words {ch : patt…

【知识分享】MIPI C-PHY 互连技术参数定义

目录 0 概述 1 Interconnect Specifications 1.1 Differential Insertion Loss 1.2 Differential Reflection Loss 1.3 Common-Mode Reflection Loss 1.4 Intra-Lane Cross Coupling 1.5 Mode-Conversion Loss 1.6 Inter-Lane Static Skew 2 Driver and Receiver Char…

好的STEM编程语言有哪些?

STEM是科学&#xff08;Science&#xff09;&#xff0c;技术&#xff08;Technology&#xff09;&#xff0c;工程&#xff08;Engineering&#xff09;&#xff0c;数学&#xff08;Mathematics&#xff09;四门学科英文首字母的缩写&#xff0c;STEM教育简单来说就是在通过在…

【管控业财一体化】

1. 引言 大型集团在现代企业管理中扮演着举足轻重的角色&#xff0c;其管控业财一体化解决方案是实现企业高效运营的关键。随着数字化转型的加速&#xff0c;业财一体化不再局限于财务与业务流程的简单融合&#xff0c;而是向着更深层次的数据驱动、智能化决策和价值创造方向发…

SpringMVC中的常用注解

目录 SpringMVC的定义 SpringMVC的常用注解 获取Cookie和Session SpringMVC的定义 Spring Web MVC 是基于 Servlet API 构建的原始 Web 框架&#xff0c;从⼀开始就包含在 Spring 框架中。它的正式名称“Spring Web MVC”来⾃其源模块的名称(Spring-webmvc)&#xff0c;但它…

百某应JS逆向

https://ying.baichuan-ai.com/ 目录 一、发起提问 二、观察发现有两个加密参数&#xff1a;X-Bc-Sig和X-Bc-Ts ​三、观察JS调用栈 四、从JS中搜索 X-Bc-Sig和X-Bc-Ts 五、断点并分析参数的生成方式 六、分析入参 七、发现关键的o方法调用了一个i()方法 八、验证结果 …

前后端项目打包对比——关于Spring Boot Maven Plugin配置的问题

Spring Boot Maven Plugin 配置详解 Spring Boot Maven Plugin 配置详解1. 添加插件到 pom.xml2. 插件配置2.1 基本配置2.2 配置参数详解默认行为说明简单配置示例为什么这样的配置能工作&#xff1f;进一步说明 2.3 高级配置 3. 使用插件打包应用程序3.1 打包成 JAR 文件3.2 打…

ElasticSearch(六)— 全文检索

一、match系列查询 前面讲到的query中的查询&#xff0c;都是精准查询。可以理解成跟在关系型数据库中的查询类似。match系列的查询&#xff0c;是全文检索的查询。会通过分词进行评分&#xff0c;匹配&#xff0c;再返回搜索结果。 1.1 match 查询 "query": {&qu…

c++笔记4

目录 深度优先搜索DFS DFS的复杂度 DFS与递归 递归与暴力枚举 递归树 DFS与栈 DFS的搜索剪枝 搜索剪枝与优化 可行性剪枝 最优化剪枝 减少等效的分支 优化搜索顺序 搜索的记忆化 搜索的复杂度 大多时候&#xff0c;搜索的复杂度都是指数级的。各种剪枝方案&#…

Flink 技术与应用(一)

Flink技术与应用&#xff08;初级篇&#xff09; 起源 Apache Flink 是一个开源的大数据处理框架&#xff0c;其起源可以追溯到一个名为 Stratosphere 的研究项目&#xff0c;旨在建立下一代大数据分析引擎&#xff0c;2010 年&#xff0c;从 Stratosphere 项目中分化出了 Fl…

「Unity3D」场景中的距离单位Unit与相关设置PixelsToUnits、PixelsPerUnit

GameObject在场景的位置Position&#xff0c;并没有明确是什么具体单位——如&#xff1a;Transform的x、y、z&#xff0c;或RectTransform的PosX、PosY、PosZ。而RectTransform在面板上显示的Width和Height&#xff0c;也没有具体单位&#xff0c;其实并不是像素。 事实上&am…