轻量化YOLOv7系列:结合G-GhostNet | 适配GPU,华为诺亚提出G-Ghost方案升级GhostNet
- 需要修改的代码
- models/GGhostRegNet.py代码
- 创建yaml文件
- 测试是否创建成功
本文提供了改进 YOLOv7注意力系列包含不同的注意力机制以及多种加入方式,在本文中具有完整的代码和包含多种更有效加入YOLOv8中的yaml结构,读者可以获取到注意力加入的代码和使用经验,总有一种适合你和你的数据集。
🗝️YOLOv7实战宝典--星级指南:从入门到精通,您不可错过的技巧
-- 聚焦于YOLO的 最新版本, 对颈部网络改进、添加局部注意力、增加检测头部,实测涨点💡 深入浅出YOLOv7:我的专业笔记与技术总结
-- YOLOv7轻松上手, 适用技术小白,文章代码齐全,仅需 一键train,解决 YOLOv7的技术突破和创新潜能❤️ YOLOv8创新攻略:突破技术瓶颈,激发AI新潜能"
-- 指导独特且专业的分析, 也支持对YOLOv3、YOLOv4、YOLOv5、YOLOv6等网络的修改🎈 改进YOLOv7专栏内容《YOLOv7实战宝典》📖 ,改进点包括: 替换多种骨干网络/轻量化网络, 添加40多种注意力, 包含自注意力/上下文注意力/自顶向下注意力机制/空间通道注意力/,设计不同的网络结构,助力涨点!!!
YOLOv7注意力系列包含不同的注意力机制
需要修改的代码
models/GGhostRegNet.py代码
- 新建这个文件,放入网络代码
import torch
import torch.nn as nn
import torch.nn.functional as F
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):"""3x3 convolution with padding"""return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,padding=dilation, groups=groups, bias=False, dilation=dilation)def conv1x1(in_planes, out_planes, stride=1):"""1x1 convolution"""return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)class GHOSTBottleneck(nn.Module):expansion = 1__constants__ = ['downsample']def __init__(self, inplanes, planes, stride=1, downsample=None, group_width=1,dilation=1, norm_layer=None):super(GHOSTBottleneck, self).__init__()if norm_layer is None:norm_layer = nn.BatchNorm2dwidth = planes * self.expansion# Both self.conv2 and self.downsample layers downsample the input when stride != 1self.conv1 = conv1x1(inplanes, width)self.bn1 = norm_layer(width)self.conv2 = conv3x3(width, width, stride, width // min(width, group_width), dilation)self.bn2 = norm_layer(width)self.conv3 = conv1x1(width, planes)self.bn3 = norm_layer(planes)self.relu = nn.SiLU(inplace=True)self.downsample = downsampleself.stride = stridedef forward(self, x):identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = self.conv3(out)out = self.bn3(out)if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return out# class LambdaLayer(nn.Module):
# def __init__(self, lambd):
# super(LambdaLayer, self).__init__()
# self.lambd = lambd
#
# def forward(self, x):
# return self.lambd(x)class Stage(nn.Module):def __init__(self, block, inplanes, planes, group_width, blocks, stride=1, dilate=False, cheap_ratio=0.5):super(Stage, self).__init__()norm_layer = nn.BatchNorm2ddownsample = Noneself.dilation = 1previous_dilation = self.dilationself.inplanes = inplanesif dilate:self.dilation *= stridestride = 1if stride != 1 or self.inplanes != planes:downsample = nn.Sequential(conv1x1(inplanes, planes, stride),norm_layer(planes),)self.base = block(inplanes, planes, stride, downsample, group_width,previous_dilation, norm_layer)self.end = block(planes, planes, group_width=group_width,dilation=self.dilation,norm_layer=norm_layer)group_width = int(group_width * 0.75)raw_planes = int(planes * (1 - cheap_ratio) / group_width) * group_widthcheap_planes = planes - raw_planesself.cheap_planes = cheap_planesself.raw_planes = raw_planesself.merge = nn.Sequential(nn.AdaptiveAvgPool2d(1),nn.Conv2d(planes + raw_planes * (blocks - 2), cheap_planes,kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(cheap_planes),nn.SiLU(inplace=True),nn.Conv2d(cheap_planes, cheap_planes, kernel_size=1, bias=False),nn.BatchNorm2d(cheap_planes),)self.cheap = nn.Sequential(nn.Conv2d(cheap_planes, cheap_planes,kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(cheap_planes),)self.cheap_relu = nn.SiLU(inplace=True)layers = []# downsample = nn.Sequential(# LambdaLayer(lambda x: x[:, :raw_planes])# )layers = []layers.append(block(raw_planes, raw_planes, 1, downsample, group_width,self.dilation, norm_layer))inplanes = raw_planesfor _ in range(2, blocks - 1):layers.append(block(inplanes, raw_planes, group_width=group_width,dilation=self.dilation,norm_layer=norm_layer))self.layers = nn.Sequential(*layers)def forward(self, input):x0 = self.base(input)m_list = [x0]e = x0[:, :self.raw_planes]for l in self.layers:e = l(e)m_list.append(e)m = torch.cat(m_list, 1)m = self.merge(m)c = x0[:, self.raw_planes:]c = self.cheap_relu(self.cheap(c) + m)x = torch.cat((e, c), 1)x = self.end(x)return xclass GGhostRegNet(nn.Module):def __init__(self, block, layers, widths, layer_number, num_classes=1000, zero_init_residual=True,group_width=8, replace_stride_with_dilation=None,norm_layer=None):super(GGhostRegNet, self).__init__()# ---------------------------------self.layer_number = layer_number# --------------------------------------if norm_layer is None:norm_layer = nn.BatchNorm2dself._norm_layer = norm_layerself.inplanes = widths[0]self.dilation = 1if replace_stride_with_dilation is None:# each element in the tuple indicates if we should replace# the 2x2 stride with a dilated convolution insteadreplace_stride_with_dilation = [False, False, False, False]if len(replace_stride_with_dilation) != 4:raise ValueError("replace_stride_with_dilation should be None ""or a 4-element tuple, got {}".format(replace_stride_with_dilation))self.group_width = group_width# self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=2, padding=1,# bias=False)# self.bn1 = norm_layer(self.inplanes)# self.relu = nn.ReLU(inplace=True)if self.layer_number in [0]:self.layer1 = self._make_layer(block, widths[0], layers[0], stride=1,dilate=replace_stride_with_dilation[0])if self.layer_number in [1]:self.inplanes = widths[0]if layers[1] > 2:self.layer2 = Stage(block, self.inplanes, widths[1], group_width, layers[1], stride=1,dilate=replace_stride_with_dilation[1], cheap_ratio=0.5)else:self.layer2 = self._make_layer(block, widths[1], layers[1], stride=1,dilate=replace_stride_with_dilation[1])if self.layer_number in [2]:self.inplanes = widths[1]self.layer3 = Stage(block, self.inplanes, widths[2], group_width, layers[2], stride=1,dilate=replace_stride_with_dilation[2], cheap_ratio=0.5)if self.layer_number in [3]:self.inplanes = widths[2]if layers[3] > 2:self.layer4 = Stage(block, self.inplanes, widths[3], group_width, layers[3], stride=1,dilate=replace_stride_with_dilation[3], cheap_ratio=0.5)else:self.layer4 = self._make_layer(block, widths[3], layers[3], stride=1,dilate=replace_stride_with_dilation[3])# self.avgpool = nn.AdaptiveAvgPool2d((1, 1))# self.dropout = nn.Dropout(0.2)# self.fc = nn.Linear(widths[-1] * block.expansion, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)def _make_layer(self, block, planes, blocks, stride=1, dilate=False):norm_layer = self._norm_layerdownsample = Noneprevious_dilation = self.dilationif dilate:self.dilation *= stridestride = 1if stride != 1 or self.inplanes != planes:downsample = nn.Sequential(conv1x1(self.inplanes, planes, stride),norm_layer(planes),)layers = []layers.append(block(self.inplanes, planes, stride, downsample, self.group_width,previous_dilation, norm_layer))self.inplanes = planesfor _ in range(1, blocks):layers.append(block(self.inplanes, planes, group_width=self.group_width,dilation=self.dilation,norm_layer=norm_layer))return nn.Sequential(*layers)def _forward_impl(self, x):if self.layer_number in [0]:x = self.layer1(x)if self.layer_number in [1]:x = self.layer2(x)if self.layer_number in [2]:x = self.layer3(x)if self.layer_number in [3]:x = self.layer4(x)return xdef forward(self, x):return self._forward_impl(x)
- yolo里引用
创建yaml文件
# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple# anchors
anchors:- [12,16, 19,36, 40,28] # P3/8- [36,75, 76,55, 72,146] # P4/16- [142,110, 192,243, 459,401] # P5/32# yolov7_MY backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [32, 3, 1]], # 0[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 [-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 [-1, 1, Conv, [48, 1, 1]],
# [-2, 1, Conv, [64, 1, 1]],
# [-1, 1, Conv, [64, 3, 1]],
# [-1, 1, Conv, [64, 3, 1]],
# [-1, 1, Conv, [64, 3, 1]],
# [-1, 1, Conv, [64, 3, 1]],
# [[-1, -3, -5, -6], 1, Concat, [1]],
# [-1, 1, Conv, [256, 1, 1]], # 11[-1, 1, GGhostRegNet, [48, 0]], # 5[-1, 1, MP, []],[-1, 1, Conv, [48, 1, 1]],[-3, 1, Conv, [48, 1, 1]],[-1, 1, Conv, [48, 3, 2]],[[-1, -3], 1, Concat, [1]], # 16-P3/8 [-1, 1, Conv, [96, 1, 1]],
# [-2, 1, Conv, [128, 1, 1]],
# [-1, 1, Conv, [128, 3, 1]],
# [-1, 1, Conv, [128, 3, 1]],
# [-1, 1, Conv, [128, 3, 1]],
# [-1, 1, Conv, [128, 3, 1]],
# [[-1, -3, -5, -6], 1, Concat, [1]],
# [-1, 1, Conv, [512, 1, 1]], # 24[-1, 3, GGhostRegNet, [96, 1]], # 12[-1, 1, MP, []],[-1, 1, Conv, [96, 1, 1]],[-3, 1, Conv, [96, 1, 1]],[-1, 1, Conv, [96, 3, 2]],[[-1, -3], 1, Concat, [1]], # 29-P4/16 [-1, 1, Conv, [240, 1, 1]],
# [-2, 1, Conv, [256, 1, 1]],
# [-1, 1, Conv, [256, 3, 1]],
# [-1, 1, Conv, [256, 3, 1]],
# [-1, 1, Conv, [256, 3, 1]],
# [-1, 1, Conv, [256, 3, 1]],
# [[-1, -3, -5, -6], 1, Concat, [1]],
# [-1, 1, Conv, [1024, 1, 1]], # 37[-1, 5, GGhostRegNet, [240, 2]], # 19[-1, 1, MP, []],[-1, 1, Conv, [240, 1, 1]],[-3, 1, Conv, [240, 1, 1]],[-1, 1, Conv, [240, 3, 2]],[[-1, -3], 1, Concat, [1]], # 42-P5/32 [-1, 1, Conv, [528, 1, 1]],
# [-2, 1, Conv, [256, 1, 1]],
# [-1, 1, Conv, [256, 3, 1]],
# [-1, 1, Conv, [256, 3, 1]],
# [-1, 1, Conv, [256, 3, 1]],
# [-1, 1, Conv, [256, 3, 1]],
# [[-1, -3, -5, -6], 1, Concat, [1]],
# [-1, 1, Conv, [1024, 1, 1]], # 50[-1, 7, GGhostRegNet, [528, 3]], # 26]# yolov7_MY head
head:[[-1, 1, SPPCSPC, [512]], # 27[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[19, 1, Conv, [256, 1, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 39[-1, 1, Conv, [128, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[12, 1, Conv, [128, 1, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]], # 51[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3, 39], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 64[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3, 27], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],[-2, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]], # 77[51, 1, RepConv, [256, 3, 1]],[64, 1, RepConv, [512, 3, 1]],[77, 1, RepConv, [1024, 3, 1]],[[78,79,80], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)]
测试是否创建成功
这里是引用