基于YOLO8的目标检测系统:开启智能视觉识别之旅

文章目录

  • 在线体验
  • 快速开始
  • 一、项目介绍篇
    • 1.1 YOLO8
    • 1.2 ultralytics
    • 1.3 模块介绍
      • 1.3.1 scan_task
      • 1.3.2 scan_taskflow.py
      • 1.3.3 target_dec_app.py
  • 二、核心代码介绍篇
    • 2.1 target_dec_app.py
    • 2.2 scan_taskflow.py
  • 三、结语

在线体验

  • 基于YOLO8的目标检测系统



  • 基于opencv的摄像头实时目标检测

快速开始

  1. 创建anaconda环境
conda create -n XXX python=3.10
  1. pytorch安装
# 查看cuda版本(示例为:11.8)
nvcc -V

# 安装对应版本的pytorch
# 官网:https://pytorch.org/# pip安装
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118# conda安装,建议配置conda国内镜像源
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

  1. 其他依赖包安装
pip install -r ./requirements-target-dec.txt
  1. 网页界面如下,可在示例图片中快速进行试验

一、项目介绍篇

在人工智能和机器学习的浪潮中,YOLO8作为目标检测领域的一颗新星,以其卓越的性能和灵活性,受到了广泛关注。本项目基于YOLO8算法,构建了一个高效、易用的目标检测系统,旨在为用户提供一个强大的本地部署解决方案。通过精心设计的界面和丰富的功能,用户可以轻松实现目标检测任务,无论是在网页端还是本地计算机上。

1.1 YOLO8

  • YOLO8是新一代的目标检测算法,由YOLO(You Only Look Once)系列发展而来。它继承了YOLO算法快速、高效的特点,并在此基础上进行了改进和优化,以适应更复杂的目标检测任务。YOLO8通过引入新的网络结构和训练策略,提高了检测的准确性和鲁棒性,尤其是在小目标和遮挡目标的检测上表现出色。
  • YOLO8算法的关键创新包括:
    1. 改进的网络结构:YOLO8采用了更深层次的卷积神经网络,增强了特征提取的能力,使得模型能够更准确地识别和定位目标。
    2. 优化的锚框机制:通过优化锚框的设计,YOLO8能够更好地适应不同形状和大小的目标,减少了误检和漏检的情况。
    3. 增强的数据增强技术:YOLO8使用了更先进的数据增强方法,提高了模型对不同环境和条件的泛化能力。
    4. 高效的训练策略:YOLO8引入了新的损失函数和训练技巧,加快了模型的收敛速度,同时保持了检测性能。
  • YOLO8的这些改进使得它在实时性要求高的应用场景中,如视频监控、自动驾驶等领域,具有广泛的应用前景。尽管YOLO8的具体细节和性能指标尚未完全公开,但其在目标检测领域的潜力已经引起了业界的广泛关注。

1.2 ultralytics

  • Ultraalytics是一家专注于计算机视觉和人工智能技术的公司,以其开发的高性能目标检测模型YOLO(You Only Look Once)而闻名。YOLO模型以其快速和准确的目标检测能力在业界获得了广泛认可,特别是在需要实时处理的场合,如视频监控、自动驾驶和工业自动化等领域。
  • Ultraalytics的YOLO算法通过单次前向传播即可预测图像中的物体位置和类别,与传统的多步骤检测方法相比,大大提高了检测速度。随着YOLO算法的迭代发展,Ultraalytics不断推出新版本,如YOLOv3、YOLOv4、YOLOv5等,每个版本都在准确性、速度和易用性方面进行了优化。
  • 除了目标检测,Ultraalytics还提供其他AI解决方案,包括图像分割、数据标注工具和模型部署服务。公司致力于推动AI技术的创新和应用,帮助企业实现智能化转型。Ultraalytics的技术和产品因其高效性和可靠性,在全球范围内拥有众多用户和合作伙伴。

1.3 模块介绍

image.png

1.3.1 scan_task

  • 构建了执行的任务,用于为scan_taskflow提供可执行对象

1.3.2 scan_taskflow.py

  • 基于open-cv2的本地界面系统

1.3.3 target_dec_app.py

  • gradio页面代码

二、核心代码介绍篇

2.1 target_dec_app.py

import cv2
import gradio as gr
from scan_task import ScanTargetDecscan_model = ScanTargetDec(version='YOLOv8n', use_gpu=False)def target_scan(frame):frame, _ = scan_model.run(frame, text_size=50)'''run方法其他可传参数text_color: 显示文字颜色 默认:(0, 0, 255)text_size: 显示文字大小 默认:20y_pos: y轴位置偏移量 默认:0'''return frameif __name__ == '__main__':examples = [[cv2.imread('./examples/image_detection.jpg')]]with gr.Blocks() as demo:with gr.Tabs():# 图片目标检测with gr.Tab(label='图片目标检测') as tab1:gr.Markdown(value="# 图片目标检测")with gr.Row(variant="panel"):with gr.Column():img_input1 = gr.Image(label="上传图片输入", mirror_webcam=False)with gr.Row(variant="panel"):submit_bn1 = gr.Button(value='上传')clear_bn1 = gr.ClearButton(value='清除')img_out1 = gr.Image(label="目标检测输出", mirror_webcam=False)# 添加演示用例gr.Examples(label='上传示例图片', examples=examples, fn=target_scan,inputs=[img_input1],outputs=[img_out1],cache_examples=False)submit_bn1.click(fn=target_scan, inputs=img_input1, outputs=img_out1)clear_bn1.add([img_input1, img_out1])# 摄像头实时目标检测with gr.Tab(label='摄像头实时目标检测') as tab3:gr.Markdown(value="# 摄像头实时目标检测")with gr.Column(variant='panel') as demo_scan:with gr.Row(variant="panel"):img_input3 = gr.Image(label="实时输入", sources=["webcam"],mirror_webcam=False, streaming=True)img_out3 = gr.Image(label="目标检测输出", sources=["webcam"],mirror_webcam=False, streaming=True)img_input3.stream(fn=target_scan, inputs=img_input3, outputs=img_out3)demo.launch()
  1. 此段代码主要是用于生成前端页面,以及配置按钮点击事件触发时的回调函数
  2. 可配置参数包括:use_gputext_colortext_sizey_pos
    1. use_gpu: 是否使用gpu
    2. text_color:定位的二维码,显示文字颜色 默认:(0, 0, 255)
    3. text_size:定位的二维码,显示文字大小 默认:20
    4. y_pos:y轴位置偏移量 默认:0

2.2 scan_taskflow.py

class ScanTaskflow:def __init__(self, task: str, video_index=0, win_name='Scan XXX', win_width=800, win_height=600, **kwargs):..初始化摄像头扫描对象,设置窗口尺寸等属性..def run(self, **kwargs):..开启摄像头,进行检测任务..if __name__ == '__main__':# 启动默认的目标检测系统scanTaskflow = ScanTaskflow(task='scan_target_dec',version='YOLOv8n', use_gpu=True,video_index=0, win_name='target_dec',win_width=640, win_height=480)scanTaskflow.run(text_color=(0, 255, 0), y_pos=0)
  1. __init__ 用于预加载项目所需模型
  2. run 是检测系统的核心方法,用于将视频的实时帧进行检测

三、结语

  • 本项目提供了一个基于YOLO8算法的目标检测系统,它不仅易于部署和使用,而且具备高性能和高灵活性。我们相信,随着技术的不断进步和社区的积极参与,本项目将能够为更多用户提供价值,推动目标检测技术的发展。如果您在使用过程中遇到任何问题,欢迎在ModelScope创空间-基于YOLO8的目标检测系统上提出issue,我们会及时为您解答。
  • 希望本项目能够成为您在目标检测领域的得力助手。如果您觉得本项目对您有帮助,请给项目点个star,并持续关注我的个人主页ModelBulider的个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/49086.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

敏捷CSM认证:精通敏捷Scum估算方法,高效完成项目!

咱们做项目的时候可能都遇到过这种情况:项目一开始信心满满,觉得 deadline 稳了。结果呢?各种意外状况频出,时间好像怎么都不够用了,最后项目只能无奈延期,整个团队都像霜打的茄子。 说到底,还…

谷粒商城实战笔记-44-前端基础-Vue-整合ElementUI快速开发/设置模板代码

文章目录 一,安装导入ElementUI1,安装 element-ui2,导入 element-ui 二,ElementUI 实战1,将 App.vue 改为 element-ui 中的后台布局2,开发导航栏2.1 开发MyTable组件2.2 注册路由2.3 改造App.vue2.4 新增左…

Qt实现简易CAD软件的开发:技术解析与实现

文章目录 简易CAD软件的开发:技术解析与实现引言项目概述程序入口主窗口的实现主窗口类定义(mainwindow.h)主窗口类实现(mainwindow.cpp) 自定义绘图视图自定义绘图视图类定义(myqgraphicsview.h&#xff0…

深入浅出C语言指针(进阶篇)

深入浅出C语言指针(基础篇) 深入浅出C语言指针(进阶篇) 目录 引言 一、指针和数组 1.数组名的理解 2.指针访问数组 3.一维数组传参的本质 二、二级指针 1.二级指针的概念 2.二级指针的内存表示 3.二级指针的解引用 三、字符指针 1.指针指向单个字符 2.指针指向字…

便携式自动气象站:科技赋能气象观测

便携式自动气象站,顾名思义,就是一款集成了多种气象传感器,能够自动进行气象观测和数据记录的设备。它体积小巧、重量轻,便于携带和快速部署,可以在各种环境下进行气象数据的实时监测。同时,通过内置的无线…

版本更新 | Orillusion 0.8发布,与大家同在!

过了这么久,我们Orillusion引擎的大版本更新终于来啦! 这次的版本发布,大部分是更新了引擎底层能力,有兴趣的小伙伴可以直接查看: 🔗 https://github.com/Orillusion/orillusion 其实面对社区的小伙伴&…

应对爬虫过程中代理IP掉线的实用指南

当代理IP在爬虫中频繁掉线时,我们先要了解出现问题的可能原因,这不仅限于技术性因素,还涉及操作策略和环境因素。只有在找到具体原因后,才能针对问题类型从源头解决IP掉线问题。 一、问题原因: 1. 代理IP质量问题导致…

Python将字典转换为DataFrame的实战代码

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

AWS监控工具,监控性能指标

执行AWS监视是为了跟踪在AWS环境中主动运行的应用程序工作负载和资源,AWS监视器跟踪各种AWS云指标,以帮助提高在其上运行的应用程序的整体性能。 借助阈值突破警报系统,AWS应用程序监控在识别性能瓶颈来源方面起着至关重要的作用&#xff0c…

力扣高频SQL 50题(基础版)第五题

文章目录 力扣高频SQL 50题(基础版)第五题1683. 无效的推文题目说明:思路分析:实现过程:结果截图: 力扣高频SQL 50题(基础版)第五题 1683. 无效的推文 题目说明: 表&a…

图片转pdf的软件有哪些?这几种转换工具了解下

在日常的办公学习中,图片转PDF的需求愈发普遍。不论是工作汇报、学习笔记还是生活点滴,我们都希望将重要的图片内容整理成易于查阅的PDF格式。那么,有哪些软件可以做到将图片转换成PDF格式呢?给大家介绍5种简单好用的转换方法&…

Xlua原理 二

一已经介绍了初步的lua与C#通信的原理,和xlua的LuaEnv的初始化内容。 这边介绍下Wrap文件。 一.Wrap介绍 导入xlua后可以看到会多出上图菜单。 点击后生成一堆wrap文件,这些文件是lua调用C#时进行映射查找用的中间代码。这样就不需要去反射调用节约性…

ubuntu安装mysql8.0

文章目录 ubuntu版本安装修改密码取消root跳过密码验证 ubuntu版本 22.04 安装 更新软件包列表 sudo apt update安装 MySQL 8.0 服务器 sudo apt install mysql-server在安装过程中,系统可能会提示您设置 root 用户的密码,请务必牢记您设置的密码。…

【中项】系统集成项目管理工程师-第4章 信息系统架构-4.3应用架构

前言:系统集成项目管理工程师专业,现分享一些教材知识点。觉得文章还不错的喜欢点赞收藏的同时帮忙点点关注。 软考同样是国家人社部和工信部组织的国家级考试,全称为“全国计算机与软件专业技术资格(水平)考试”&…

linux中RocketMQ安装(单机版)及springboot中的使用

文章目录 一、安装1.1、下载RocketMQ1.2、将下载包上传到linux中,然后解压1.3、修改runserver.sh的jvm参数大小(根据自己服务器配置来修改)1.4、启动mqnamesrv (类似于注册中心)1.5、修改runbroker.sh的jvm参数大小&am…

Kafka Producer之事务性

文章目录 1. 跨会话幂等性失效2. 开启事务3. 事务流程原理 事务性可以防止跨会话幂等性失效,同时也可以保证单个生产者的指定数据,要么全部成功要么全部失败,不限分区。不可以多个生产者共用相同的事务ID。 1. 跨会话幂等性失效 幂等性开启…

Spring MVC笔记

Java 版本: JDK17 Eclipse: eclipse-jee-2023-12-R-win32-x86_64.zip Tomcat 10 JDK17采用springframework 6 *必须考虑兼容性问题,所以JDK 和spring framework不要乱搭配 初步创建Maven Project 安装包 修改poem.xml <dependency><groupId>org.springframework…

Linux中tomcat下载教程

一.安装tomcat 1.安装 EPEL 仓库&#xff1a; sudo yum install epel-release2.安装 Tomcat&#xff1a; sudo yum install tomcat3.启动 Tomcat 服务&#xff1a; sudo systemctl start tomcat4.启用 Tomcat 服务开机启动&#xff1a; sudo systemctl enable tomcat5.检查…

大语言模型-Bert-Bidirectional Encoder Representation from Transformers

一、背景信息&#xff1a; Bert是2018年10月由Google AI研究院提出的一种预训练模型。 主要用于自然语言处理&#xff08;NLP&#xff09;任务&#xff0c;特别是机器阅读理、文本分类、序列标注等任务。 BERT的网络架构使用的是多层Transformer结构&#xff0c;有效的解决了长…

计算机网络知识-面试点1

1. 三握四挥 定义&#xff1a; 在计算机网络中&#xff0c;特别是TCP/IP协议中&#xff0c;“三握”指的是三次握手&#xff08;Three-way Handshake&#xff09;&#xff0c;而“四挥”则指的是四次挥手&#xff08;Four-way Handshake&#xff09;。这两个过程分别用于TCP连接…