数据结构(Java):七大排序算法【详解】

目录

1、排序的概念

1.1 排序

1.2 排序的稳定性

1.3 内部排序&外部排序

1.4 各排序算法总结对比

2、 插入排序

2.1 🌸直接插入排序

2.2 🌸希尔排序

3、 选择排序

3.1 🌸直接选择排序

3.2 直接选择排序优化

3.3 🌸堆排序

4、 交换排序

4.1 🌸冒泡排序

4.2 🌸快速排序

4.2.1 Hoare法(次选)

4.2.2 🌜挖坑法(首选)

4.2.3 前后指针法(很少考察)

4.2.4 🌜递归实现快排 

4.2.5🌜🌜🌜递归实现快排的优化

4.2.5.1 🌟优化1:三数取中法

4.2.5.2 🌟优化2:末尾换用直接插入排序减少函数栈帧

4.2.6 非递归实现快排

5、🌸归并排序


1、排序的概念

1.1 排序

排序:就是使一串记录,按照其中的某个或某些关键字的大小递增或递减的排列起来的操作。

1.2 排序的稳定性

假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。

1.3 内部排序&外部排序

内部排序被排序的数据元素全部存放在计算机内存中的排序算法,也称内排序。

外部排序待排序的记录数太多,所有的记录不可能存放在内存中, 排序过程中必须在内、外存之间进行数据交换,这样的排序称为外部排序。

1.4 各排序算法总结对比

我们先放出总结对比,下文细谈。


2、 插入排序

2.1 🌸直接插入排序

步骤如下: 

  1. 从二个元素开始(第一个元素可认为已有序),用tmp记录当前元素,从后往前扫描已排序元素
  2. 若扫描到的元素比tmp大,则将该元素后移
  3. 若扫描到的元素小于等于tmp则将tmp插入到该元素后
  4. 若扫描到的所有元素都大于tmp,此时所有元素都已后移,则将tmp插入下标为0的位置
  5. 循环重复以上步骤,直至所有元素插入到正确位置使序列有序

通过分析直接插入排序的思想,我们可以做出以下总结

  • 直接插入排序具有稳定性
  • 最坏情况下,时间复杂度为:O(N^2),即逆序情况下,每次插入新元素都插入到0下标处,等差数列计算得O(N^2)。
  • 最好情况下,时间复杂度为:O(N),即有序情况下,每次插入元素就是插入到当前位置,无序移动,遍历一遍序列即可。
  • 越有序,时间效率越高;越无序,时间效率越低。
  • 空间复杂度:O(1),没有开辟额外空间。

 直接插入排序代码:

/*** 直接插入排序* 时间复杂度:最坏(逆序):O(N^2) 最好(顺序):O(N)* 空间复杂度:O(1)* @param arr: 待排序数组*/public void insertSort(int[] arr) {//从1下标处往前插入元素for (int i = 1; i < arr.length; i++) {//下标i处元素会改变,使用临时变量tmp记录int tmp = arr[i];int j = i-1;for ( ; j >= 0; j--) {if (arr[j] > tmp) {//如果j处值比tmp大,往后移arr[j+1] = arr[j];}else {//如果j处值小于等于tmp,则说明找到了应插入的位置,插入到j后,跳出循环arr[j+1] = tmp;break;}}//待插入元素比当前有序序列中的所有元素都小(while循环结束后到此)arr[j+1] = tmp;}}

2.2 🌸希尔排序

希尔排序又称缩小增量排序,是插入排序的一种,是直接插入排序的优化。

希尔排序的步骤为:

  1. 选定第一增量gap,把待排序数据分成gap个组, 所有距离为gap的数据分在同一组内(跳跃式分组),并对每一组内的数据进行直接插入排序。
  2. 然后再取一个比第一增量小的整数作为第二增量,重复上述操作…(每次排序都会时序列更有序)
  3. 直至gap等于1时,即将整体看做一组进行直接插入排序(这时序列已接近有序,即使所有数据进行直接插入排序,时间效率也会很高)

动图演示: 

 

 希尔排序总结:

  • 希尔排序是插入排序的一种,是直接插入排序的优化。
  • 采用跳跃式分组,目的是将大的数据往后放,将小的数据往前拿。
  • 当gap > 1时都是预排序,目的是让数组更接近于有序。
  • 当gap == 1时,数组已经接近有序的了,这样再排序就会很快,整体会达到优化效果。
  • 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,通常按照:   O(N*logN)或者O(N^1.3)~ O(N^1.5)
  • 空间复杂度:O(1)
  • 希尔排序:不稳定

注意:在每一组增量的希尔排序中,每次从gap下标处开始遍历要插入的新元素,当前位置插入完成后i++就可以,使得每组插入排序交叉进行。 

希尔排序代码:

/*** 希尔排序* 时间复杂度:(N*logN)或者O(N^1.3)~ O(N^1.5)* 空间复杂度:O(1)* 希尔排序:不稳定* @param arr: 待排序数组*/public void shellSort(int[] arr) {int gap = arr.length;while (gap != 1) {gap /= 2;shell(arr,gap);}}public void shell(int[] arr,int gap) {//从gap下标处往前插入元素,当前位置插入完成后i++,每组插入排序交叉进行for (int i = gap; i < arr.length; i++) {//下标i处元素会改变,使用临时变量tmp记录int tmp = arr[i];int j = i-gap;for ( ; j >= 0; j -= gap) {if (arr[j] > tmp) {//如果j处值比tmp大,往后移arr[j+gap] = arr[j];}else {//如果j处值小于等于tmp,则说明找到了应插入的位置,插入到j的gap后,跳出循环arr[j+gap] = tmp;break;}}//待插入元素比当前有序序列中的所有元素都小(while循环结束后到此)arr[j+gap] = tmp;}}

3、 选择排序

3.1 🌸直接选择排序

基本思想:

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。

时间复杂度:O(N^2) 和数据 是否有序无关,一定是O(N^2)

空间复杂度:O(1)

不稳定

直接选择排序代码:

/*** 选择排序* 时间复杂度:O(N^2) 和数据 是否有序无关,一定是O(N^2)* 空间复杂度O(1)* 不稳定* @param arr*/public void selectSort(int[] arr) {int left = 0;int right = arr.length-1;for ( ; left < right; left++) {int minIndex = left;for (int i = left; i < arr.length; i++) {if (arr[i] < arr[minIndex]) {minIndex = i;}}swap(arr,left,minIndex);}}

3.2 直接选择排序优化

直接选择排序一趟只选出了最小值; 

而优化的思想是:一趟遍历同时选出序列的最小值和最大值,将最小值和最大值与序列首尾数据交换。

 /*** 直接选择排序的优化* @param arr*/public void selectSort2(int[] arr) {int left = 0;int right = arr.length-1;while (left < right) {int maxIndex = left;int minIndex = left;for (int i = left+1; i <= right ; i++) {if(arr[i] < arr[minIndex]) {minIndex = i;}if (arr[i] > arr[maxIndex]) {maxIndex = i;}}swap(arr,left,minIndex);//当最大值正好是  left下标时  此时 把最大值换到了minIndex的位置了if (maxIndex == left) {maxIndex = minIndex;}swap(arr,right,maxIndex);left++;right--;}}

3.3 🌸堆排序

若要升序排列,要建大根堆;若要降序排列,就要建小根堆。

以排升序为例:若要排升序,则为大堆,排序过程如下:

  1. 将堆顶元素和堆末元素交换,有效数据个数减一(因为堆顶元素为最大值元素,此时最大值元素已来到数组末尾)
  2. 将0下标处向下调整,重新调整为大堆
  3. 继续将堆顶元素和堆末元素交换,有效数据个数减一(堆顶元素为次大值元素,此时次大值元素已来到数组末尾倒数二个位置处)
  4. 将0下标处向下调整,重新调整为大堆
  5. 重复以上过程,直至只剩一个元素的时候,此时数组已有序且为升序排列

时间复杂度:O(N*logN)

空间复杂度:O(1)

稳定性:不稳定 

 堆排序排升序代码:

/*** 堆排序:建堆-》堆排序* 时间复杂度:O(N*logN)* 空间复杂度:O(1)* 不稳定* @param arr:无序数组*/public void sortHeap(int[] arr) {createHeap(arr);int end = arr.length-1;while (end > 0) {swap(arr, 0, end);siftDown(arr, 0, end);end--;}}/*** 向下调整建堆* @param arr :无序数组*/public void createHeap(int[] arr) {int parent = (arr.length-1-1)/2;for ( ; parent >= 0 ; parent--) {siftDown(arr,parent, arr.length);}}/*** 向下调整算法* @param arr* @param parent*/private void siftDown(int[] arr, int parent,int usedSize) {int child = parent*2+1;while (child < usedSize) {if (child+1 < usedSize) {if (arr[child+1] > arr[child]) {child += 1;}}if (arr[parent] < arr[child]) {swap(arr,parent,child);parent = child;child = parent*2+1;}else {break;}}}

4、 交换排序

4.1 🌸冒泡排序

冒泡排序是一种极易理解的基本排序算法。

思路:
每一趟排序将待排序空间中每一个元素依次与后一个元素进行比较,使值较大的元素逐渐从前移向后部,进行冒泡,一趟排序下来以后,待排序空间中的最后一个元素最大。

时间复杂度:O(N^2)(讨论没有优化的情况下,也就是没有的boolean元素和-i操作)

空间复杂度:O(1)

稳定性:稳定

冒泡排序代码(含优化):

/*** 冒泡排序* 时间复杂度:【讨论没有优化的情况下,也就是 没有下方的boolean元素和-i操作】O(N^2)* 优化后的时间复杂度会达到O(N) (第一趟就排好序了)* 空间复杂度:O(1)* @param arr*/public void bubble(int[] arr) {for (int i = 0; i < arr.length-1; i++) {boolean flg = false;for (int j = 0; j < arr.length-1-i; j++) {if (arr[j]>arr[j+1]) {swap(arr,j,j+1);flg = true;}}if (!flg) {break;}}}

4.2 🌸快速排序

快速排序(快排)的基本思想为:任取待排序元素序列中的某元素作为基准值(一般以最左侧元素为基准值),按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

所以实现快排的关键步骤是:如何将基准值放到指定位置。

将区间按照基准值划分为左右两半部分的常见方式有:Hoare法、挖坑法、前后指针法,我们逐个讲解。

4.2.1 Hoare法(次选)

Hoare法排基准值步骤:

  1. 选出基准值tmp,一般为序列第一个或最后一个。
  2. 定义left和right分别指向序列的头和尾,left向后扫描序列,right向前扫描序列。注意:若将序列第一个数据选为基准,则right先走;若将序列第最后一个数据选为基准,则left先走。
  3. right扫描到<tmp的数值时停下,left开始走,直到left遇到一个>tmp的数值时,将数组left和right位置处的内容交换,right再次开始走,如此进行下去,直到left和right最终相遇,此时将相遇点位置的内容与基准位置的内容交换。(注意:right一定要遇到小于tmp的数时才停,等于时不可以!!!left一定要遇到大于tmp的数时才停,等于时不可以!!!若等于时就停下来可能会造成死循环!!!如下图所示)
  4. 此时tmp的左边都是小于tmp的数,tmp的右边都是大于tmp的数。

单趟动图演示:  

Hoare法排基准值代码(只排一个基准值,快排的整体实现需递归或非递归实现):

/*** Hoare法(单趟)* @param arr* @param left 起始位置* @param right 结束位置* @return 排好序的基准值的下标*/public int partitionHoare(int[] arr,int left,int right) {int tmpLeft = left;int tmp = arr[left];while (left < right) {//等于tmp时,right也要--!!!while (left < right && arr[right] >= tmp) {right--;}//等于tmp时,left也要++!!!while (left < right && arr[left] <= tmp) {left++;}swap(arr,left,right);}swap(arr,tmpLeft,left);return left;}

4.2.2 🌜挖坑法(首选)

挖坑法思想与Hoare法基本类似。

挖坑法排基准值步骤:

  1. 选出一个数据为基准值(一般是最左边或是最右边的)存放在tmp变量中,在该数据位置形成一个坑
  2. 还是定义一个left和一个right,left从左向右走,right从右向左走。(若在最左边挖坑,则需要right先走;若在最右边挖坑,则需要left先走)
  3. 若right先走,则若right找到小于tmp的值,则填入左边的坑中,right处形成以一个新坑;left再走,若left找到大于tmp的值,则填入右边的坑中,left处形成一个新坑。
  4. 直到left和right最终相遇,再将tmp中的数据放入left和right相遇的那个坑中。
  5. 此时tmp的左边都是小于tmp的数,tmp的右边都是大于tmp的数。

单趟动图演示:  

 挖坑法排基准值代码(只排一个基准值,快排的整体实现需递归或非递归实现):

/*** 挖坑法(单趟)* @param arr 无序序列* @param left 起始位置* @param right 结束位置* @return 排好序的基准值的下标*/public int partitionHole(int[] arr,int left,int right) {int tmp = arr[left];while (left < right) {//等于tmp时,right也要--!!!while (left < right && arr[right] >= tmp) {right--;}//挖坑法只需覆盖数据 填坑即可,不需要交换arr[left] = arr[right];//等于tmp时,left也要++!!!while (left < right && arr[left] <= tmp) {left++;}//挖坑法只需覆盖数据 填坑即可,不需要交换arr[right] = arr[left];}//将相遇位置的坑 填上tmp(基准值)arr[left] = tmp;return left;}

4.2.3 前后指针法(很少考察)

 思路:

  1. 定义key来存储数组中最左边的数据,perv指向数组开始的位置,cur指向prev的下一个位置。
  2. 当cur下标中的元素小于key时,则让prev开始往后走。如果此时prev下标中的元素不等于cur下标中的元素,则两者进行交换。
  3. 否则cur一直往下走,当cur走完时,将prev下表中的元素和key中的数据进行交换
  4. 不断重复上述操作。

单趟动图演示: 

 前后指针法排基准值代码(只排一个基准值,快排的整体实现需递归或非递归实现):

 /*** 前后指针法(单趟)* @param arr 无序数组* @param left 起始位置* @param right 结束位置* @return 排好序的基准值的下标*/public int partitionFrontRearPointer(int[] arr, int left, int right) {int prev = left ;int cur = left+1;while (cur <= right) {if(array[cur] < array[left] && array[++prev] != array[cur]) {swap(array,cur,prev);}cur++;}swap(array,prev,left);return prev;}

4.2.4 🌜递归实现快排 

快速排序的实现,我们可以根据二叉树的前序遍历的思想递归去实现快排

  1. 将整个序列的第一个基准值排好序,将基准值当做根节点
  2. 以排好序的基准值(根节点)为界划分为左右两部分(左子树和右子树)
  3. 递归排左子树
  4. 递归排右子树
  5. 当递归的序列中只有一个节点时,说明有序,递归回退;
  6. 当没有左右子树时,递归回退。

 

排左子树时,end=pivot-1;排右子树,start=pivot+1

因为通过递归实现快排,所以我们需要注意递归回退的条件:当 start >= end 时,递归要进行回退。

递归实现快排(最好使用挖坑法):

 /*** 快速排序* 时间复杂度:最好情况下:O(N*logN)   最坏情况下:O(N^2)* 空间复杂度:最坏情况:O(N)          最好情况:O(logN)* @param arr :待排序数组*/public void quickSort(int[] arr) {quick(arr,0, arr.length-1);}public void quick(int[] arr,int start,int end) {if (start >= end) {return;}int pivot = partitionHole(arr, start, end);quick(arr,start,pivot-1);quick(arr,pivot+1,end);}/*** Hoare法* @param arr 无序序列* @param left 起始位置* @param right 结束位置* @return 排好序的基准值的下标*/public int partitionHoare(int[] arr,int left,int right) {int tmpLeft = left;int tmp = arr[left];while (left < right) {//等于tmp时,right也要--!!!while (left < right && arr[right] >= tmp) {right--;}//等于tmp时,left也要++!!!while (left < right && arr[left] <= tmp) {left++;}swap(arr,left,right);}swap(arr,tmpLeft,left);return left;}/*** 挖坑法* @param arr 无序序列* @param left 起始位置* @param right 结束位置* @return 排好序的基准值的下标*/public int partitionHole(int[] arr,int left,int right) {int tmp = arr[left];while (left < right) {//等于tmp时,right也要--!!!while (left < right && arr[right] >= tmp) {right--;}//挖坑法只需覆盖数据 填坑即可,不需要交换arr[left] = arr[right];//等于tmp时,left也要++!!!while (left < right && arr[left] <= tmp) {left++;}//挖坑法只需覆盖数据 填坑即可,不需要交换arr[right] = arr[left];}//将相遇位置的坑 填上tmp(基准值)arr[left] = tmp;return left;}/*** 前后指针法* @param arr 无序数组* @param left 起始位置* @param right 结束位置* @return 排好序的基准值的下标*/public int partitionFrontRearPointer(int[] arr, int left, int right) {int prev = left ;int cur = left+1;while (cur <= right) {if(arr[cur] < arr[left] && arr[++prev] != arr[cur]) {swap(arr,cur,prev);}cur++;}swap(arr,prev,left);return prev;}private void swap(int[] arr, int left, int right) {int tmp = arr[left];arr[left] = arr[right];arr[right] = tmp;}

4.2.5🌜🌜🌜递归实现快排的优化

4.2.5.1 🌟优化1:三数取中法

当序列为有序序列时,每趟right都会一直向左扫描至left处,快速排序的时间复杂度会退化为O(N^2),递归会形成"单分支的树",空间复杂度也会升至O(N)即高度次。

我们可以通过改善来使快排的时间复杂度稳定在O(N*logN),即三数取中法。

三数取中法大致思想如下:

  • 定义一个mid变量来记录序列中间位置的下标,即 mid =(left+right)/ 2;
  • 选出left、mid、right三个位置处中间的值,将这个中间值和left位置的值相交换,即将中等大小的数据尽可能的成为基准值。
  • 这样会避免树单分支的情况出现,提升了效率。
4.2.5.2 🌟优化2:末尾换用直接插入排序减少函数栈帧

 在快排递归的最后几层,函数的递归会大量增加,造成大量函数栈帧从而降低时间效率

而在快排的最后几层,虽然组数多,但每组数据量少,且已接近有序,所以我们可以在快排的末尾使用直接插入排序来进行排序,不用再继续递归排序。

将两种方法结合优化快排:

 /*** 快速排序* 时间复杂度:最好情况下:O(N*logN)   最坏情况下:O(N^2)* 优化后可以稳定为:O(N*logN) * 空间复杂度:最坏情况:O(N)          最好情况:O(logN)* @param arr :待排序数组*/public void quickSort(int[] arr) {quick(arr,0, arr.length-1);}public void quick(int[] arr,int start,int end) {if (start >= end) {return;}//避免末尾的大量递归if(end - start + 1 <= 7) {insertSortRange(arr,start,end);return;}//三数取中int midIndex = findMiddle(arr,start,end);swap(arr,midIndex,start);int pivot = partitionHole(arr, start, end);quick(arr,start,pivot-1);quick(arr,pivot+1,end);}/*** 直接插入排序-》区间内的插入排序* @param arr* @param start 区间的起始* @param end 区间的结束,[start,end]*/private void insertSortRange(int[] arr, int start, int end) {for (int i = start+1; i <= end; i++) {int tmp = arr[i];int j = i-1;for ( ; j >= start ; j--) {if (arr[j] > tmp) {arr[j+1] = arr[j];}else {arr[j+1] = tmp;break;}}arr[j+1] = tmp;}}/*** 快排优化-》三数取中法* @param arr 待排序数组* @param left  序列的起始位置* @param right 序列的结束位置* @return 返回中间值的下标*/private int findMiddle(int[] arr, int left, int right) {int mid = (left+right)/2;//选出中间值if (arr[left] > arr[right]) {if (arr[mid] > arr[left]) {return left;}else if (arr[mid] < arr[right]) {return right;}else {return mid;}}else {if (arr[left] > arr[mid]) {return left;} else if (arr[mid] > arr[right]) {return right;}else {return mid;}}}
/*** 挖坑法* @param arr 无序序列* @param left 起始位置* @param right 结束位置* @return 排好序的基准值的下标*/public int partitionHole(int[] arr,int left,int right) {int tmp = arr[left];while (left < right) {//等于tmp时,right也要--!!!while (left < right && arr[right] >= tmp) {right--;}//挖坑法只需覆盖数据 填坑即可,不需要交换arr[left] = arr[right];//等于tmp时,left也要++!!!while (left < right && arr[left] <= tmp) {left++;}//挖坑法只需覆盖数据 填坑即可,不需要交换arr[right] = arr[left];}//将相遇位置的坑 填上tmp(基准值)arr[left] = tmp;return left;}

快速排序时间复杂度:

优化前:

最好情况(乱序):O(N*logN)(logN层,每层递归区间之和都是N)

最坏情况(有序):O(N^2)(单分支的情况)

优化后:

稳定在:O(N*logN)

快速排序空间复杂度:

最好:O( logN)(完全二叉树时,高度层)

最坏:O(N)(单分支的情况)


4.2.6 非递归实现快排

非递归的实现需要借助

  • 还是先求出pivot,若其左右序列不为空且数量不为1,则将左右序列的范围即left和right入栈
  • 若左右序列数量为1或无左右序列,说明左右序列有序,不入栈
  • 接着出栈两个元素,即新序列的范围,求出新pivot后,再判断其左右序列是否可入栈;循环往复,直至栈为空,说明序列已有序。
  • 若 start+1 < pivot 说明pivot左序列数据个数>1,可入栈
  • 若 end-1 > pivot 说明pivot右序列数据个数>1,可入栈

非递归实现快排代码:

 public void quickSort(int[] arr) {quickNor(arr,0, arr.length-1);}/*** 非递归实现快排* @param arr* @param start* @param end*/public void quickNor(int[] arr,int start,int end) {Deque<Integer> stack = new ArrayDeque<>();//排基准值int pivot = partitionHole(arr,start,end);//若有左序列且数量不为1,则入栈if (start+1 < pivot) {stack.push(start);stack.push(pivot-1);}//若有右序列且数量不为1,则出栈if (end-1 > pivot) {stack.push(pivot+1);stack.push(end);}//循环,直至栈为空while (!stack.isEmpty()) {end = stack.pop();start = stack.pop();pivot = partitionHole(arr,start,end);if (start+1 < pivot) {stack.push(start);stack.push(pivot-1);}if (end-1 > pivot) {stack.push(pivot+1);stack.push(end);}}}/*** 挖坑法* @param arr 无序序列* @param left 起始位置* @param right 结束位置* @return 排好序的基准值的下标*/public int partitionHole(int[] arr,int left,int right) {int tmp = arr[left];while (left < right) {//等于tmp时,right也要--!!!while (left < right && arr[right] >= tmp) {right--;}//挖坑法只需覆盖数据 填坑即可,不需要交换arr[left] = arr[right];//等于tmp时,left也要++!!!while (left < right && arr[left] <= tmp) {left++;}//挖坑法只需覆盖数据 填坑即可,不需要交换arr[right] = arr[left];}//将相遇位置的坑 填上tmp(基准值)arr[left] = tmp;return left;}

5、🌸归并排序

归并排序的基本思想是:

将序列的数据分解,当分解到只有一个数据时,可认为序列有序,再将两个有序序列合并为一个有序序列,直至整个序列有序。

我们可使用递归实现归并排序:

  1. 使用left记录序列起始位置,right记录末尾位置,mid记录中间位置
  2. 向左递归时,left=left,right=mid
  3. 向右递归时,left=mid+1,right=right
  4. 当left==right时,说明序列只有一个元素,可认为序列有序,递归回退(代码上可写为left>=right时递归回退)
  5. 将回退的左右两个有序序列合并为一个有序序列
  6. 最终将整体合并为有序序列
  7. 注意:合并有序序列时,我们需要借助新数组存排好序的数据,再将数据改进原数组中,故有空间损耗,空间复杂度为O(N)
  8. 计算时间复杂度时,也可转化为二叉树,层数为logN,每层合并时的总数为N次,故时间复杂度为:O(N*logN)

递归实现归并排序代码:

public void mergeSort(int[] arr) {mergeSortTmp(arr,0,arr.length - 1);}public void mergeSortTmp(int[] arr,int left,int right) {int mid = (left + right) / 2;if (left >= right) {return;}//分解mergeSortTmp(arr, left, mid);mergeSortTmp(arr, mid + 1, right);//走到这里,元素已经分解,开始合并merge(arr,left,right,mid);}//合并private void merge(int[] arr, int left, int right, int mid) {int start1 = left;int end1 = mid;int start2 = mid + 1;int end2 = right;int len = right - left + 1;int[] tmp = new int[len];int k = 0;while (start1 <= end1 && start2 <= end2) {if (arr[start1] <= arr[start2]) {tmp[k++] = arr[start1++];}else {tmp[k++] = arr[start2++];}}while (start1 <= end1) {tmp[k++] = arr[start1++];}while (start2 <= end2) {tmp[k++] = arr[start2++];}//i+left 保证不覆盖其他区域的元素for (int i = 0; i < tmp.length; i++) {arr[i + left] = tmp[i];}}


END

到这里本篇博客就结束了,共计1.3w字,详细列举了七大排序算法的各种实现细节、优化以及多种方法的实现,希望能够对你有所帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/49050.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何给7Z分卷文件设置密码?简单几步给文件加上安全锁

在压缩7Z文件的时候&#xff0c;如果文件比较大&#xff0c;很多小伙伴都会把文件压缩成7Z分卷文件&#xff0c;那想要保护7Z分卷文件&#xff0c;要如何设置密码呢&#xff1f;不清楚的小伙伴&#xff0c;一起来看看吧&#xff01; 我们可以使用7-Zip解压缩文件&#xff0c;在…

qt初入门9:qt记录日志的方式,日志库了解练习(qInstallMessageHandler,qslog, log4qt)

项目中用到qt&#xff0c;考虑有需要用到去记录日志&#xff0c;结合网络&#xff0c;整理一下&#xff0c;做记录。 简单了解后&#xff0c;qt实现日志模块思考&#xff1a; 1&#xff1a;借助qt自带的qInstallMessageHandler重定向到需要的目的地。 2&#xff1a;自己封装一…

openmv学习笔记(24电赛备赛笔记)

#openmv简介 openmv一种小型&#xff0c;可编程机器视觉摄像头&#xff0c;设计应用嵌入式应用和计算边缘&#xff0c;是图传模块&#xff0c;或者认为是一种&#xff0c;具有图像处理功能的单片机&#xff0c;提供多种接口&#xff08;I2C SPI UART CAN ADC DAC &#xff0…

高翔【自动驾驶与机器人中的SLAM技术】学习笔记(三)基变换与坐标变换;微分方程;李群和李代数;雅可比矩阵

一、基变换与坐标变换 字小,事不小。 因为第一反应:坐标咋变,坐标轴就咋变呀。事实却与我们想象的相反。这俩互为逆矩阵。 第一次读没有读明白,后面到事上才明白。 起因是多传感器标定:多传感器,就代表了多个坐标系,多个基底。激光雷达和imu标定。这个标定程序,网上,…

Bootstrap5 Navbar多级下拉框

实现目标&#xff1a; 1、访问 Bootstrap5-navbar 2、修改dropdown为多级 <!DOCTYPE HTML> <html lang"en-US"> <head><meta charset"UTF-8"><title></title><link rel"stylesheet" href"https…

(7) cmake 编译C++程序(二)

文章目录 概要整体代码结构整体代码小结 概要 在ubuntu下&#xff0c;通过cmake编译一个稍微复杂的管理程序 整体代码结构 整体代码 boss.cpp #include "boss.h"Boss::Boss(int id, string name, int dId) {this->Id id;this->Name name;this->DeptId …

05 HTTP Tomcat Servlet

文章目录 HTTP1、简介2、请求数据格式3、响应数据格式 Tomcat1、简介2、基本使用3、Maven创建Web项目4、IDEA使用Tomcat Servlet1、简介2、方法介绍3、体系结构4、urlPattern配置5、XML配置 HTTP 1、简介 HTTP概念 HyperText Transfer Protocol&#xff0c;超文本传输协议&am…

鸿蒙 动态共享包HSP的创建和引用

1.什么是动态共享包HSP HSP&#xff08;Harmony Shared Package&#xff09;是动态共享包&#xff0c;可以包含代码、C库、资源和配置文件&#xff0c;通过HSP可以实现代码和资源的共享。HSP不支持独立发布&#xff0c;而是跟随其宿主应用的APP包一起发布&#xff0c;与宿主应…

【Django5】模板引擎

系列文章目录 第一章 Django使用的基础知识 第二章 setting.py文件的配置 第三章 路由的定义与使用 第四章 视图的定义与使用 第五章 二进制文件下载响应 第六章 Http请求&HttpRequest请求类 第七章 会话管理&#xff08;Cookies&Session&#xff09; 第八章 文件上传…

redis的学习(三):Java客户端jedis的例子和SpringDataRedis的简介

简介 Java客户端jedis的例子和SpringDataRedis的简介## Java客户端 常用的Java客户端有jedis&#xff0c;lettuce&#xff0c;redission。 优缺点&#xff1a; jedis简单实用&#xff0c;api名是redis的命令&#xff0c;学习成本低。不过jedis实例的线程是不安全的&#xff…

VideoAgent: Long-form Video Understanding with Large Language Model as Agent

VideoAgent: Long-form Video Understanding with Large Language Model as Agent 基本信息 博客贡献人 燕青 作者 Xiaohan Wang, Yuhui Zhang, et al. 标签 Large Language Model Agent, Long-form Video Understanding, Vision-Language Foundation Models 摘要 长视…

Android中systrace配置及注意问题

Android中systrace配置及注意问题 systrace配置的官方文档地址如下&#xff1a;优化启动时间 Systrace systrace 允许在启动期间收集内核和 Android 跟踪记录。systrace 的可视化可以帮助分析启动过程中的具体问题。&#xff08;不过&#xff0c;如果要查看整个启动过程中的平…

2024.7.22 作业

1.将双向链表和循环链表自己实现一遍&#xff0c;至少要实现创建、增、删、改、查、销毁工作 循环链表 looplinklist.h #ifndef LOOPLINKLIST_H #define LOOPLINKLIST_H#include <myhead.h>typedef int datatype;typedef struct Node {union {int len;datatype data;}…

win10开启Linux子系统

打开win10开发人员模式&#xff0c;在设置–>更新和安全–>针对开发人员&#xff0c;中勾选开发人员模式。 然后在控制面板中勾选添加Linux子系统。依次进入控制面板–>程序–>启用或关闭windows功能&#xff0c;勾选适用于windows的linux的子系统&#xff0c;点击…

Mac清理垃圾的软件有哪些 怎么清理电脑上的缓存文件和垃圾清理

如果你发现你的Mac运行速度开始慢如蜗牛&#xff0c;或者硬盘空间快速减少&#xff0c;那么可能是时候使用一款好的清理软件来“洗个澡”了。市场上有许多优秀的Mac清理软件&#xff0c;包括一些出色的国产软件和国际知名软件。那么&#xff0c;mac电脑清理垃圾的软件有哪些&am…

Java---后端文件上传详解

袁门才俊志高远&#xff0c; 震古烁今意决然。 风采翩翩才情显&#xff0c; 雄姿英发立世间。 目录 一&#xff0c;简单案例演示 二&#xff0c;服务器本地存储 三&#xff0c;配置单个文件上传大小限制 一&#xff0c;简单案例演示 首先简单编写一个前端网页&#xff1a; &l…

知识图谱:知识图谱概述(一)

一、知识图谱简介 知识图谱&#xff0c;是结构化的语义知识库&#xff0c;主要用于描述现实世界中的实体及其相互关系&#xff0c;由节点和边组成。节点可以是实体&#xff0c;如汽车、街道等&#xff0c;或是抽象的概念&#xff0c;如AI、疾病等。边可以是实体的属性&#xff…

基于FPGA的以太网设计(2)----以太网的硬件架构(MAC+PHY)

1、概述 以太网的电路架构一般由MAC、PHY、变压器、RJ45和传输介质组成,示意图如下所示: 需要注意的是,上图是一个简化了的模型,它描述的是两台主机之间的直接连接,但在实际应用中基本都是多台主机构成的局域网,它们之间并不直接相连,而是通过交换机Switch来进行…

【PPT把当前页输出为图片】及【PPT导出图片模糊】的解决方法(sci论文图片清晰度)

【PPT把当前页输出为图片】及【PPT导出图片模糊】的解决方法 内容一&#xff1a;ppt把当前页输出为图片&#xff1a;内容二&#xff1a;ppt导出图片模糊的解决方法&#xff1a;方法&#xff1a;步骤1&#xff1a;打开注册表编辑器步骤2&#xff1a;修改注册表&#xff1a; 该文…

万字长文之分库分表里无分库分表键如何查询【后端面试题 | 中间件 | 数据库 | MySQL | 分库分表 | 其他查询】

在很多业务里&#xff0c;分库分表键都是根据主要查询筛选出来的&#xff0c;那么不怎么重要的查询怎么解决呢&#xff1f; 比如电商场景下&#xff0c;订单都是按照买家ID来分库分表的&#xff0c;那么商家该怎么查找订单呢&#xff1f;或是买家找客服&#xff0c;客服要找到对…