多类支持向量机损失(SVM损失)

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):"""unvectorized version. Compute the multiclass svm loss for a single example (x,y)- x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)with an appended bias dimension in the 3073-rd position (i.e. bias trick)- y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)- W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)"""delta = 1.0 # see notes about delta later in this sectionscores = W.dot(x) # scores becomes of size 10 x 1, the scores for each classcorrect_class_score = scores[y]D = W.shape[0] # number of classes, e.g. 10loss_i = 0.0for j in range(D): # iterate over all wrong classesif j == y:# skip for the true class to only loop over incorrect classescontinue# accumulate loss for the i-th exampleloss_i += max(0, scores[j] - correct_class_score + delta)return loss_idef L_i_vectorized(x, y, W):"""A faster half-vectorized implementation. half-vectorizedrefers to the fact that for a single example the implementation containsno for loops, but there is still one loop over the examples (outside this function)"""delta = 1.0scores = W.dot(x)# compute the margins for all classes in one vector operationmargins = np.maximum(0, scores - scores[y] + delta)# on y-th position scores[y] - scores[y] canceled and gave delta. We want# to ignore the y-th position and only consider margin on max wrong classmargins[y] = 0loss_i = np.sum(margins)return loss_idef L(X, y, W):"""fully-vectorized implementation :- X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)- y is array of integers specifying correct class (e.g. 50,000-D array)- W are weights (e.g. 10 x 3073)"""# evaluate loss over all examples in X without using any for loops# left as exercise to reader in the assignment

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/48840.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学习并测试SqlSugar的单库事务功能

SqlSugar支持单库事务、多租户事务、多库事务,本文学习并测试单库事务的基本用法。   使用SqlSugarClient类、ISqlSugarClient接口都可以创建SqlSugarClient数据库操作实例,其区别在于,针对单库而言,SqlSugarClient类支持调用Be…

【python】NumPy运行报错分析:IndexError——数组索引越界问题

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

matlab simulink气隙局部放电仿真技术研究

1、内容简介 略 87-可以交流、咨询、答疑 2、内容说明 略 为了解决目前国内外局部放电仿真方法难以计算气隙局部放电暂态过程的问题 , 利用 MATLAB (SIMULINK ) 的公共模块库和电力系统专业模块库 , 根据单气隙局部放电仿真物理模型 , 构造了气隙局部放 电仿真计算的电…

树状数组优化dp

这个题目怎么去想呢,我们先构造前缀和,一般思路肯定是用两层循环,但是一定会超时,我们的数据范围是 1e5,那我们必须找到复杂度为 nlog n 的才行,所以我们可以考虑每次计算以 i 结尾的子数组的数量&#xff…

移动硬盘在苹果电脑上使用后在windows中无法读取 Win和Mac的硬盘怎么通用

在日益普及的跨平台工作环境中,苹果电脑与Windows PC之间的数据交换成为日常需求。然而,用户常面临一个困扰:为何苹果电脑的硬盘能在macOS下流畅运行,却在Windows系统中变得“水土不服”?这一问题核心在于硬盘格式的不…

MT19937

MT19937 文章目录 MT19937题型1 逆向extract_number[SUCTF2019]MT 题型2 预测随机数[GKCTF 2021]Random 题型3逆向twist[V&N2020 公开赛]Backtrace 题型4 逆向init扩展题型WKCTF easy_random 现成模块randcrack库Extend MT19937 Predictor库 MT19937是一种周期很长的伪随机…

安全防御:过滤技术

目录 一、URL过滤 URL过滤的方式 二、HTTP与HTTPS HTTP协议获取URL的方式 HTTP协议做控制管理的流程 HTTPS 1,配置SSL的解密功能 2,直接针对加密流量进行过滤 需求: 三、DNS过滤 四、内容过滤 文件过滤技术 文件过滤技术的处理流…

抖音私信卡片制作教程,使用W外链创建抖音/快手/小红书卡片

在数字营销和社交媒体日益繁荣的今天,利用外部链接(W外链平台)为抖音平台创建卡片已成为一种有效的推广手段。抖音卡片不仅可以直接将观众导向目标网页或产品,还能提高用户的参与度和品牌的曝光度。下面,我们将详细介绍…

java-selenium 截取界面验证码图片并对图片文本进行识别

参考链接 1、需要下载Tesseract工具并配置环境变量&#xff0c;步骤如下 Tesseract-OCR 下载安装和使用_tesseract-ocr下载-CSDN博客 2、需要在IDEA中导入tess4j 包&#xff1b;在pom.xml文件中输入如下内容 <!--导入Tesseract 用于识别验证码--><dependency>&l…

微信小程序开发:基础架构与配置文件

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…

基于支持向量机(SVM)的数据回归预测

代码原理及流程 支持向量机&#xff08;SVM&#xff09;是一种强大的机器学习算法&#xff0c;既可以用于分类问题&#xff0c;也可以用于回归问题。在回归问题中&#xff0c;SVM 的目标是找到一个函数&#xff0c;使得预测值与实际值之间的误差最小化&#xff0c;并且保持在一…

set(集合),multiset容器及pair队组的创建

1.set的基本概念&#xff1a;所有元素再插入时自动按升序排序&#xff0c;set/multiset属于关联式容器&#xff0c;底层结构是用二叉树实现的 set与multiset区别&#xff1a; set中不允许容器中有重复的元素 multiset允许容器中有重复的元素 2.set的构造函数 3.set的大小和…

python—爬虫爬取视频样例

下面是一个使用Python爬虫爬取视频的基本例子。创建一个Python爬虫来爬取视频通常涉及到几个步骤&#xff1a;发送HTTP请求、解析网页内容、提取视频链接、下载视频文件。 import jsonimport requests from lxml import etreeif __name__ __main__:# UA伪装head {"User…

数字图像处理笔记(二)---- 像素加图像统计特征

系列文章目录 文章目录 系列文章目录前言一、认识数字图像二、图像的数学描述二、图像的统计特征总结 前言 慕课视频地址 一、认识数字图像 图像分为模拟图像和数字图像。要想获得数字图像需要通过采样量化编码等过程。 量化和采样的过程是将模拟信号转化为数字信号。编码的过…

JVM常用工具中jmap实现手动进行堆转储(heap dump文件)并使用MAT(Memory Analyzer Tool)进行堆分析-内存消耗分析

场景 JVM-常用工具(jps、jstat、jinfo、jmap、jhat、jstack、jconsole、jvisualvm)使用&#xff1a; JVM-常用工具(jps、jstat、jinfo、jmap、jhat、jstack、jconsole、jvisualvm)使用_jvm分析工具-CSDN博客 上面讲了jmap的简单使用。 下面记录其常用功能&#xff0c;实现堆…

sqlite数据库,轻量级数据库的使用

什么是sqlite数据库 sqlite是具有零配置、无服务的特点&#xff0c;遵循 ACID 规则&#xff0c;是一款备受欢迎的轻量级数据库。 tips&#xff1a;ACID 规则即&#xff0c;A&#xff08;原子性&#xff09;、C&#xff08;一致性&#xff09;、I&#xff08;独立性&#xff0…

前端npm下载依赖 idealTree:vue3-demo: sill idealTree buildDeps解决方案

第一步 第二步 第三步 第四步 直接输入npm install就可以安装依赖了

SpringBoot源码(1)ApplicationContext和BeanFactory

1、调用getBean方法 SpringBootApplication public class SpringBootDemoApplication {public static void main(String[] args) {ConfigurableApplicationContext applicationContext SpringApplication.run(SpringBootDemoApplication.class, args);applicationContext.get…

Java强软弱虚引用的特点以及应用场景(面试重点)

强&#xff1a;即使OOM也不回收软&#xff1a;内存溢出前回收弱&#xff1a;只要垃圾收集就死虚&#xff1a;对垃圾收集没关系&#xff0c;只有得到通知&#xff08;插眼&#xff0c;也操作不了对象、只能看到它还活着&#xff09; 一、软引用 代码示例&#xff1a; public cl…