ubuntu2204配置anacondacuda4090nvidia驱动

背景

某个机房的几台机器前段时间通过dnat暴露至公网后被入侵挖矿,为避免一些安全隐患将这几台机器执行重装系统操作;

这里主要记录配置nvidia驱动及cuda&anaconda。

步骤

大概分为几个步骤

  1. 禁用nouveau
  2. 配置grub显示菜单
  3. install nvidia-driver
  4. install cuda
  5. install anaconda
  6. 测试

执行

system info

root@xxx:~# cat /etc/os-release 
PRETTY_NAME="Ubuntu 22.04.3 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.3 LTS (Jammy Jellyfish)"
VERSION_CODENAME=jammy
ID=ubuntu
ID_LIKE=debian
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
UBUNTU_CODENAME=jammy
root@xxx:~# uname -a 
Linux exai-121 6.5.0-41-generic #41~22.04.2-Ubuntu SMP PREEMPT_DYNAMIC Mon Jun  3 11:32:55 UTC 2 x86_64 x86_64 x86_64 GNU/Linux

禁用nouveau

echo -e "blacklist nouveau\noptions nouveau modeset=0" > /etc/modprobe.d/blacklist-nouveau.conf
update-initramfs -u

配置grub显示菜单

    sed -i 's/^GRUB_TIMEOUT=.*$/GRUB_TIMEOUT=10/' /etc/default/grubsed -i 's/^GRUB_TIMEOUT_STYLE=hidden/#&/' /etc/default/grub# 验证grep -E "GRUB_TIMEOUT" /etc/default/grub# 更新grubupdate-grub

install nvidia-driver

两种安装驱动的方法

  1. 添加ppa源的方式用apt安装
  2. 官网下载指定版本的离线安全包安装

方法一

使用ubuntu带的硬件扫描配合ppa源安装

# 扫描硬件
ubuntu-drivers devices== /sys/devices/pci0000:00/0000:00:01.1/0000:01:00.0 ==
modalias : pci:v000010DEd00002684sv000010DEsd0000167Cbc03sc00i00
vendor   : NVIDIA Corporation
manual_install: True
driver   : nvidia-driver-535-server-open - distro non-free
driver   : nvidia-driver-535 - distro non-free recommended
driver   : nvidia-driver-545-open - distro non-free
driver   : nvidia-driver-535-server - distro non-free
driver   : nvidia-driver-545 - distro non-free
driver   : nvidia-driver-535-open - distro non-free
driver   : nvidia-driver-530 - third-party non-free
driver   : xserver-xorg-video-nouveau - distro free builtin
# apt安装需要的驱动版本即可 例如
apt install nvidia-driver-535 -y

方法二

编译器下载

apt update && apt install gcc make -y

官网下载535.183.01版本对应的离线安装run包
这里直接使用curl+proxy下载了

chmod +x NVIDIA-Linux-x86_64-535.183.01.run ./NVIDIA-Linux-x86_64-535.183.01.run

过程中遇到的选项根据提示选择即可

root@xxx:~# nvidia-smi 
Thu Jul 14 09:xx:01 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.01             Driver Version: 535.183.01   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 4090        Off | 00000000:01:00.0 Off |                  Off |
| 32%   62C    P2             224W / 450W |  19736MiB / 24564MiB |     96%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off | 00000000:81:00.0 Off |                  Off |
| 31%   49C    P2             144W / 450W |  11430MiB / 24564MiB |     38%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   2  NVIDIA GeForce RTX 4090        Off | 00000000:C1:00.0 Off |                  Off |
| 37%   63C    P2             140W / 450W |  11430MiB / 24564MiB |     39%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   3  NVIDIA GeForce RTX 4090        Off | 00000000:C2:00.0 Off |                  Off |
| 32%   58C    P2             136W / 450W |  11430MiB / 24564MiB |     40%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+

其他常用命令
更详细的卸载请参考https://blog.csdn.net/qq_43652666/article/details/134705794

# 卸载nvidia驱动
nvidia-uninstall

如果系统没有nvidia-uninstall可以使用dpkg包管理器列出系统中的nvidia关键字的包进行卸载

dpkg -l |grep nvidia*
apt remove --purge '^nvidia-.*'

install cuda

https://developer.nvidia.com/cuda-toolkit-archive这里选择要下载的版本
下载对应的离线run包
在这里插入图片描述
执行安装的时候要取消自带安装的530版本驱动,因为本地已经有驱动了。
注意这里cuda后缀标识代表会安装530.30.02版本的驱动,而我们本地已经安装了535的驱动,cuda版本是向下兼容的。

root@xxx:~# chmod +x cuda_12.1.1_530.30.02_linux.run 
# 安装完成
root@exai-121:~# sh cuda_12.1.1_530.30.02_linux.run
===========
= Summary =
===========Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-12.1/Please make sure that-   PATH includes /usr/local/cuda-12.1/bin-   LD_LIBRARY_PATH includes /usr/local/cuda-12.1/lib64, or, add /usr/local/cuda-12.1/lib64 to /etc/ld.so.conf and run ldconfig as rootTo uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-12.1/bin
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 530.00 is required for CUDA 12.1 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:sudo <CudaInstaller>.run --silent --driverLogfile is /var/log/cuda-installer.log# 验证
root@xxx:~# /usr/local/cuda-12.1/bin/nvcc --version 
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Mon_Apr__3_17:16:06_PDT_2023
Cuda compilation tools, release 12.1, V12.1.105
Build cuda_12.1.r12.1/compiler.32688072_0

ubuntu2204上不推荐使用530版本的驱动,安装会有一些依赖和GCC问题,尝试解决无果。推荐使用高版本驱动来向下兼容cuda版本。

问题:
make: *** [Makefile:82: modules] Error 2
-> Checking to see whether the nvidia kernel module was successfully built
executing: ‘cd ./kernel; /usr/bin/make -k -j32 NV_EXCLUDE_KERNEL_MODULES=“” SYSSRC=“/lib/modules/6.5.0-41-generic/build” SYSOUT=“/lib/modules/6.5.0-41-generic/build” NV_KERNEL_MODULES=“nvidia”’…
make[1]: Entering directory ‘/usr/src/linux-headers-6.5.0-41-generic’
warning: the compiler differs from the one used to build the kernel
The kernel was built by: x86_64-linux-gnu-gcc-12 (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0
You are using: cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0

Warning: Compiler version check failed:

The major and minor number of the compiler used to
compile the kernel:

x86_64-linux-gnu-gcc-12 (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0, GNU ld (GNU Binutils for Ubuntu) 2.38

does not match the compiler used here:

cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Copyright © 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

It is recommended to set the CC environment variable
to the compiler that was used to compile the kernel.

To skip the test and silence this warning message, set
the IGNORE_CC_MISMATCH environment variable to “1”.
However, mixing compiler versions between the kernel
and kernel modules can result in subtle bugs that are
difficult to diagnose.
Failed CC version check.

The kernel was built by: x86_64-linux-gnu-gcc-12 (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0 You are using: cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
make[3]: *** [scripts/Makefile.build:251: /tmp/selfgz2901/NVIDIA-Linux-x86_64-530.30.02/kernel/nvidia/i2c_nvswitch.o] Error 1
make[3]: Target ‘/tmp/selfgz2901/NVIDIA-Linux-x86_64-530.30.02/kernel/’ not remade because of errors.
make[2]: *** [/usr/src/linux-headers-6.5.0-41-generic/Makefile:2039: /tmp/selfgz2901/NVIDIA-Linux-x86_64-530.30.02/kernel] Error 2
make[2]: Target ‘modules’ not remade because of errors.
make[1]: *** [Makefile:234: __sub-make] Error 2
make[1]: Target ‘modules’ not remade because of errors.
make[1]: Leaving directory ‘/usr/src/linux-headers-6.5.0-41-generic’
make: *** [Makefile:82: modules] Error 2
ERROR: The nvidia kernel module was not created.
ERROR: Installation has failed. Please see the file ‘/var/log/nvidia-installer.log’ for details. You may find suggestions on fixing installation problems in the README available on the Linux driver download page at www.nvidia.com.
/tmp/selfgz2901/NVIDIA-Linux-x86_64-530.30.02/kernel/common/inc/nv-mm.h:88:60: warning: passing argument 4 of ‘get_user_pages’ makes pointer from integer without a cast [-Wint-conversion]
/tmp/selfgz2901/NVIDIA-Linux-x86_64-530.30.02/kernel/nvidia/nv-mmap.c:673:23: error: assignment of read-only member ‘vm_flags’

尝试通过更换gcc版本解决:

update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-11 11
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12
update-alternatives --config gcc
# 弹出来的选项中选择12版本

这是离线安装驱动方案下的问题,使用apt安装530版本未测试过,不确定包管理器是否会自动解决编译依赖问题

后续

使用sudo定制权限管理
https://blog.51cto.com/154773488/2449180
https://blog.csdn.net/Field_Yang/article/details/51547804

参考

https://www.cnblogs.com/tarsss/p/17433419.html
https://blog.csdn.net/jiexijihe945/article/details/131517630
cuda下载地址
https://developer.nvidia.com/cuda-toolkit-archive

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/48539.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Python+Django,开发的一个在线教育系统

一、项目简介 使用Python的web框架Django进行开发的一个在线教育系统&#xff01; 二、所需要的环境与组件 Python3.6 Django1.11.7 Pymysql Mysql pure_pagination DjangoUeditor captcha xadmin crispy_forms 三、安装 1. 下载项目后进入项目目录cd Online-educ…

配置RIPv2的认证

目录 一、配置IP地址、默认网关、启用端口 1. 路由器R1 2. 路由器R2 3. 路由器R3 4. Server1 5. Server2 二、搭建RIPv2网络 1. R1配置RIPv2 2. R2配置RIPv2 3. Server1 ping Server2 4. Server2 ping Server1 三、模拟网络攻击&#xff0c;为R3配置RIPv2 四、在R…

Linux:Linux权限

目录 1. Linux权限的概念 2. Linux权限管理 2.1 文件访问者的分类 2.2 文件类型和访问权限 2.2.1 文件类型 2.2.2 基本权限 2.3 文件权限值的表示方法 2.4 文件访问权限的相关设置方法 2.4.1 chmod 2.4.2 chown 2.4.3 chgrp 2.4.4 umask 3. file指令 4. Linux目…

base SAS programming学习笔记13(Array)

1.Array array-name{dimension} <elements> array-name&#xff1a;向量名称 dimension&#xff1a;向量长度&#xff0c;默认为1&#xff1b; elements:列出变量名&#xff0c;变量名要么全是数值变量或者全是字符变量 array-name和variable不能相同&#xff1b;也不能和…

C++面试题之判断一个变量是不是指针

对于变量其实对应的就是内存&#xff0c;而内存并没有表明一定是什么数据类型&#xff0c;所以判断变量是否是一个指针其实是一个参数类型匹配问题&#xff0c;在C中支持函数的重载&#xff0c;那么不同的函数因为参数的不同从而匹配不同函数调用过程。 编译器在进行函数匹配调…

JAVA周总结(集合) 0721day

一.Collection集合 集合:可以存放多种类型数据的容器。 集合和数组的区别 数组的长度是固定的,集合的长度根据存储的数据发生改变。 数组只能存同一种类型的数组,而集合可以存多种类型。 1.2 单列集合常用类的继承体系 java.util.List: 添加的元素是有序、可重复 ; Lis…

PostgreSQL简介和安装

一、Postgresql简介&#xff1a; 1、PostgreSql是功能强大的&#xff0c;开源的关系型数据库&#xff0c;底层基于C语言实现&#xff1b; 2、开源&#xff1a;允许对PostgreSql进行封装&#xff0c;用于商业收费&#xff1b; 3、版本迭代速度快&#xff0c;正式版本已经到15.R…

【轻松拿捏】java中为什么要使用克隆?如何实现对象克隆?深拷贝和浅拷贝区别是什么?

java中为什么要使用克隆&#xff1f;如何实现对象克隆&#xff1f;深拷贝和浅拷贝区别是什么&#xff1f; 一、如何在Java中实现对象克隆 1.1 浅拷贝 1.2 深拷贝 1.3 区别总结 二、面试回答技巧 1. 定义克隆及其用途 2. 解释浅拷贝和深拷贝 3. 具体实现浅拷贝和深拷贝 …

【Python】使用库 -- 详解

库就是别人已经写好了的代码&#xff0c;可以让我们直接拿来用。 一个编程语言能不能流行起来&#xff0c;一方面取决于语法是否简单方便容易学习&#xff0c;一方面取决于生态是否完备。所谓的 “生态” 指的就是语言是否有足够丰富的库&#xff0c;来应对各种各样的场景。在…

LeetCode 188题: 买卖股票的最佳时机IV优化(原创)

之前完成了LeetCode 188题&#xff1a; 买卖股票的最佳时机IV&#xff08;原创&#xff09;-CSDN博客&#xff0c;虽然完成代码编写&#xff0c;并提交成功&#xff0c;但运行效率还未达到最优的1ms&#xff0c;见下图&#xff1a; 仔细检查代码&#xff0c;感觉还是有可优化的…

OpenCV中的GrabCut图像分割算法的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 功能描述 GrabCut 算法是一种用于图像分割的技术&#xff0c;由 Carsten Rother、Vladimir Kolmogorov 和 Andrew Blake 在 2004 年 SIGGRAPH 会议的论文《…

AI多模态识别ALM大模型分享:Qwen-Audio

ALM (Large Audio Language Model) 1&#xff09;Qwen-Audio 声音音频对话 参考&#xff1a; https://qwen-audio.github.io/Qwen-Audio/ https://huggingface.co/Qwen/Qwen-Audio-Chat “Qwen-Audio 接受多种音频&#xff08;人类语音、自然声音、音乐和歌曲&#xff09;以及…

基于面向对象和递归的拦截器设计模式

1 定义 拦截器模式&#xff08;Interceptor Pattern&#xff09;&#xff0c;是指提供一种通用的扩展机制&#xff0c;可以在业务操作前后提供一些切面的&#xff08;Cross-Cutting&#xff09;的操作。这些切面操作通常是和业务无关的&#xff0c;比如日志记录、性能统计、安…

day2 单机并发缓存

文章目录 1 sync.Mutex2 支持并发读写3 主体结构 Group3.1 回调 Getter3.2 Group 的定义3.3 Group 的 Get 方法 4 测试 本文代码地址&#xff1a; https://gitee.com/lymgoforIT/gee-cache/tree/master/day2-single-node 本文是7天用Go从零实现分布式缓存GeeCache的第二篇。 …

【LeetCode】80.删除有序数组中的重复项II

1. 题目 2. 分析 3. 代码 class Solution:def removeDuplicates(self, nums: List[int]) -> int:if len(nums) < 3:return len(nums)i 0j 1k 2while(k < len(nums)):if (nums[i] nums[j]):while(k < len(nums) and nums[j] nums[k] ):k1if (k < len(nums…

校验deb、rpm、apt、yum安装文件完整性测试

简介&#xff1a;deb包在Linux操作系统中类似于windows中的软件包&#xff08;msi&#xff09;&#xff0c;几乎不需要什么复杂的编译即可通过鼠标点击安装使用。此外,deb广泛应用于越狱后iOS软件及MeeGo&#xff08;含Maemo软件&#xff09;中。deb 格式是 Debian 系统(包含 D…

StringBuilder和StringBuffer

目录 &#xff08;一&#xff09;为什么要引入StringBuilder和StringBuffer &#xff08;二&#xff09;StringBuilder和StringBuffer &#xff08;1&#xff09;底层数组长度 (2)StringBuilder与StringBuffer扩容机制 &#xff08;3&#xff09;StringBuilder和StringBuf…

并发编程面试题1

并发编程 1、线程池中提交一个任务的流程是怎样的&#xff1f; 1、提交任务&#xff1a;首先&#xff0c;一个任务被提交到线程池。这个任务通常是一个实现了Runnable或Callable接口的对象&#xff1b; 2、检测线程池状态&#xff1a;线程池会首先检测其运行状态。如果线程池…

javafx使用发现的问题

1.按钮的方法 如果在fxml按钮的方法报错&#xff0c;并且你已在lei中添加了它的按钮及其按钮方法&#xff0c;那么可能是FXML和控制器类未正确关联&#xff1a; 确保你的FXML文件通过 fx:controller 属性正确指定了与之关联的控制器类。例如&#xff0c;fx:controller"c…

数据库之存储引擎

目录 一、MySQL支持的存储引擎 二、查看MySQL默认存储引擎 三、修改MySQL默认存储引擎 四、常用的存储引擎 1.InnoDB 2.MyISAM 3.MEMORY 一、MySQL支持的存储引擎 使用SHOW ENGINES \G; 命令查看 以“\G”结尾&#xff0c;其作用是将查询结果按列显示。 Engine&#xff…