【人工智能 | 机器学习 | 理论篇】模型评估与选择

文章目录

  • 1. 经验误差与过拟合
  • 2. 模型评估方法
    • 2.1 模型评估概念
    • 2.2 留出法
    • 2.3 k 折交叉验证法
    • 2.4 自助法
    • 2.5 调参与最终模型
  • 3. 性能度量
    • 3.1 均方误差
    • 3.2 错误率、精度
    • 3.3 查准率、查全率
    • 3.3 扩展
    • 3.4 ROC 与 AUC
    • 3.5 代价敏感错误率与代价曲线
  • 4. 比较检验
    • 4.1 假设检验
    • 4.2 交叉验证 t 检验
    • 4.3 McNemar 检验
    • 4.4 Friedman检验 与 Nemenyi后续检验
  • 5. 偏差与方差


前言:
本文为个人学习笔记

灰色部分且标注为思考的 为个人理解 部分,可能会有错误的地方

黑色部分为文章原文笔记。


1. 经验误差与过拟合

错误率:分类错误的样本占样本总数的比例。例:m 个样本中有 a 个样本分类错误,错误率
E = a m E = \frac{a}{m} E=ma
精度 1 − a m 1 - \frac{a}{m} 1ma
误差:实际预测输出与样本真实输出的差异
训练误差:在训练集上的误差
泛化误差:在新样本上的误差

分类错误率为 0,分类精度为 100% 会导致过拟合,导致泛化能力下降。与之相对的是欠拟合。过拟合无法避免,只能 ‘缓解’

模型选择:对候选模型的泛化误差进行评估,选择泛化误差最小的模型,减小过拟合现象

2. 模型评估方法

2.1 模型评估概念

选择 测试集 测试学习器对新样本的差别能力,以测试集上的 测试误差 作为 泛化误差 的近似值。通常 测试样本 也是从样本真实分布中 独立同分布采样 得到,测试集应该尽可能 与训练集互斥,即测试集在训练集中尽量未出现、未在训练过程中使用过。

以下是几种模型评估做法

2.2 留出法

将数据集 D 划分为两个互斥的集合 S 和 T。S 作为训练集,T 作为测试集。即 D = S ⋃ T , S ⋂ T = ∅ D = S \bigcup T,S \bigcap T = \varnothing D=STST=
在 S 上训练出模型后,用 T 来评估误差,作为泛化误差的估计

在这里插入图片描述

S 和 T 要尽可能保持数据分布的一致性。保留类别比例的采样方式称为 分层采样。例如 D 中包含 500 个正例 500 个反例,则 S 应包含 350个正例350个反例,T 中应包含 150个正例150个反例。若 S 、T 中样本类别比例差异很大,则误差估计会因为数据分布差异导致偏差。

S 和 T 中数据分布可能导致模型评估的结果有差别。单次使用留出法得到的估计结果往往不够稳定和可靠。使用留出法时,一般用若干次随机划分、重复进行实验评估后取平均值作为留出法的评估结果。例如进行 100 次随机划分,得到100个结果后取平均值

留出法还会导致一个问题:
若令训练集 S 包含大多数样本,则训练的模型可能更接近 D 训练的模型。但由于 T 较小,评估结果可能不够稳定准确;若令 T 包含更多一些的样本,则 S 训练的模型与 D 训练的模型差异会稍大一些,评估结果与 D 的结果会有更大的差别,从而降低评估真实性。这个问题没有完美解决方案,常见做法是将大约 2/3 ~ 4/5 的样本用于训练,剩余样本用于测试。

2.3 k 折交叉验证法

数据集 D 划分为 k 个大小相似的互斥子集,即
D = D 1 ⋃ D 2 ⋃ . . . ⋃ D k , D i ⋂ D j = ∅ ( i ≠ j ) D = D_1 \bigcup D_2 \bigcup ... \bigcup D_k, D_i \bigcap D_j = \varnothing(i \not = j) D=D1D2...DkDiDj=i=j
每个子集尽可能保持数据分布的一致性,即从 D 中通过分层采样得到。每次用 k - 1 个子集用于训练,余下子集作为测试集,从而进行 k 次训练和测试,最终得到 k 个结果的均值作为泛化误差近似。

交叉验证法评估结果很大程度上取决于 k 的取值。k 常用取值是 10,此时称为 10折交叉验证
在这里插入图片描述

与留出法相同,k 个子集同样存在不同的划分方式。为了减小样本划分差异导致的差别,通常需要将数据集划分 p 次,最终评估 p 次 k 折交叉验证结果的均值。例如:10次10折交叉验证

留一法:若 D 中包含 m 个样本,令 k = m,则留一法不受随机样本划分方式的影响,评估结果最准确。但是开销太大了,假设有 100 万样本,不考虑参数影响情况下,要训练100万次

2.4 自助法

自助法 解决了 交叉验证和留出法的 S 小于 D 导致评估结果产生偏差的问题。
给定 m 个样本的数据集 D,对它采样产生数据集 D’:每次随机从 D 中复制一个到 D’,重复 m 次,复制过的样本还可能被重新复制到 D’ 中。显然,有一部分样本会在 D’ 中重复出现,另一部分样本不会出现。
样本在 m 次采样中始终不被采到的概率是
( 1 − 1 m ) m (1 - \frac{1}{m})^m (1m1)m
lim ⁡ m − > ∞ ( 1 − 1 m ) m ⟹ 1 e ≈ 0.368 \lim\limits_{m->∞}{(1 - \frac{1}{m})^m} \implies \frac{1}{e} \approx 0.368 m>lim(1m1)me10.368
即通过自助采样,初始数据集中约有 36.8% 的样本未出现在采样数据集 D’ 中,于是我们可以用 D’ 当作训练集,D - D’ 当作测试集。

自助法在数据量较小,难以有效划分测试集、训练集时很有用。但是,自助法产生的数据集改变了初始数据集的数据分布,会引入估计偏差。因此在数据量足够时,用留出法和交叉验证法更常用

2.5 调参与最终模型

大多数学习算法都有参数设定,因此除了对学习算法进行选择,还要对算法参数进行评定,即 调参

在这里插入图片描述

测试集 T:用来评估泛化能力
验证集 V:调参
D = S + T + V
数据量小时,可以不区分 T 和 V

3. 性能度量

性能度量:衡量模型泛化能力的评价标准。不同的性能度量会导致不同的评判结果,模型的好坏是相对的

3.1 均方误差

回归 任务常用的性能度量是 均方误差
在这里插入图片描述

3.2 错误率、精度

分类 任务常用 错误率精度
在这里插入图片描述
在这里插入图片描述

3.3 查准率、查全率

例如二分类问题,可分为

  • 真正例:TP
  • 假正例:FP
  • 真反例:TN
  • 假反例:FN
    显然
    T P + F P + T N + F N = 样例总数 TP + FP + TN + FN = 样例总数 TP+FP+TN+FN=样例总数
    在这里插入图片描述
    查准率 : p = T P T P + F P 查全率: R = T P T P + F N 查准率: p = \frac{TP}{TP+FP}\\ 查全率:R = \frac{TP}{TP+FN} 查准率:p=TP+FPTP查全率:R=TP+FNTP
    查准率:模型检测为正中,真正的比例
    查全率:所有正例中,模型检测出来的比例

PR曲线
在这里插入图片描述
PR曲线,同一个模型不同训练参数,或不同模型,对应一条曲线。

思考
PR曲线为什么画出来是一条线?同一个模型相同参数训练结果的查全率和查准率难道不是一个吗?
因为 pr 曲线是通过修改阈值得到的。例如二分类问题,模型给出的结果是0-1之间的数。假设大于0.5是好瓜,会得到1个点,大于0.6是好瓜,又得到一个点。通过修改不同的阈值表示,可以得到 pr 曲线

  1. 查准率和查全率曲线越靠右上,说明模型越好,即曲线包住别的曲线
  2. 如果2个曲线有交叉点,则根据PR曲线下面积大小判断模型好坏
  3. 根据平衡点 BEP度量,查找 查准率 = 查全率 的取值。图中 A 优于 B 优于 C
  4. F1度量 优于 BEP 度量
    F 1 = 2 ∗ P ∗ R P + R = 2 ∗ T P 样例总数 − T P − T N F1 = \frac{2 * P * R}{P + R} = \frac{2 * TP }{样例总数 - TP - TN} F1=P+R2PR=样例总数TPTN2TP
    不同模型对查准率和查全率有不同偏好,F1度量的一般形式
    F β = ( 1 + β 2 ) ∗ P ∗ R ( β 2 ∗ P ) + R , β { < 1 倾向于查准率 , = 1 退化为F1 > 1 倾向于查全率 F_\beta = \frac{(1+\beta^2)*P*R}{(\beta^2*P)+R},\beta\begin{cases}<1&\text{倾向于查准率},\\=1&\text{退化为F1}\\>1&\text{倾向于查全率}\end{cases} Fβ=(β2P)+R(1+β2)PRβ <1=1>1倾向于查准率,退化为F1倾向于查全率

3.3 扩展

用来衡量机器学习算法的能力指标
宏查准率:macro-P
宏查全率:macro-R
宏F1:macro-F1
微查准率:micro-P
微查全率:micro-R
微F1:micro-F1

在这里插入图片描述
在这里插入图片描述

思考
宏和微举个例子,假如你生病了,有100个药和10个玩具,你要的是药

  1. 药多,玩具多,药重要,就用微(数量多)

假如你生病了,有10个药和100个玩具,你要的是药

  1. 药少,玩具多,药重要,就用宏(数量不占上风)

用宏还是用微,先看更关注哪个,再看数量。

就好像跟女朋友吵架的时候,女朋友吵架,她占理她就讲对错,她不占理她就讲态度。。。。

3.4 ROC 与 AUC

ROC:受试者工作特征(Receiver Operating Characteristic)曲线。训练模型后,根据学习器的预测结果对样例进行排序,按此顺序逐个把样本作为正例预测,以假正例率 FPR 为横轴,真正例率 TPR 为纵轴。每个正反例截断点在坐标轴上得到一个点,改变截断点的值,得到一条曲线,即为ROC曲线
T P R = T P T P + F N F P R = F P T N + F P TPR = \frac{TP}{TP+FN}\\FPR = \frac{FP}{TN+FP} TPR=TP+FNTPFPR=TN+FPFP
在这里插入图片描述

思考
考虑极端情况,假定截断点为 1,没有正例被识别为正例,真正例 TP = 0,根据公式得 真正例率 TPR = 0;同理 没有反例被识别为正例,FP = 0,FPR = 0。对应图上(0,0)点

假定截断点为 0,所有正例都被识别为正例,即没有正例被识别为反例,所以 FN = 0,也没有反例被识别为反例,反以 TN = 0。对应图上(1,1)点
T P R = T P T P + F N = T P T P = 1 F P R = F P T N + F P = F P F P = 1 TPR = \frac{TP}{TP+FN} = \frac{TP}{TP} = 1\\ FPR = \frac{FP}{TN+FP} = \frac{FP}{FP} = 1 TPR=TP+FNTP=TPTP=1FPR=TN+FPFP=FPFP=1

而图中的(0,1)点,假正例率 = 0,真正例率 = 1。所有正例被正确识别。FPR = 0,TPR = 1,由公式可看出,FN = 0,所以也没有反例被识别为正例,因此,(0,1)点 为 roc 曲线的 理想点,把所有正例排在反例之前,且正确找到截断点,是一个理想模型

ROC曲线 与 P-R曲线 相似,若一个学习器的 ROC 曲线 a 被 另一个ROC 曲线 b 包住,则 b 的性能优于 a 的性能。若两个曲线发生交叉,则比较 ROC 曲线的下面积大小,称为 AUC(Area Under ROC Curve)

对于有限个样本,显然可得
A U C = 1 2 ∑ i = 1 m − 1 ( x i + 1 − x i ) ∗ ( y i + y i + 1 ) AUC = \frac{1}{2}\sum_{i=1}^{m-1} (x_{i+1} - x_i) * (y_i+y_{i+1}) AUC=21i=1m1(xi+1xi)(yi+yi+1)
AUC 考虑的是 样本预测的排序质量,因为它与排序误差有紧密联系。
给定 m+ 个正例和 m- 个反例,令D+ 和 D- 分别表示正、反例集合
则排序的 损失(loss) 定义为
l r a n k = 1 m + m − ∑ x + ∈ D + ∑ x − ∈ D − ( [ f ( x + ) < f ( x − ) ] + 1 2 [ f ( x + ) = f ( x − ) ] ) l_{rank} = \frac{1}{m^+m^-}\sum_{x^+\in D^+}\sum_{x_-\in D^-}([f(x^+) < f(x^-)] + \frac{1}{2}[f(x^+)=f(x^-)]) lrank=m+m1x+D+xD([f(x+)<f(x)]+21[f(x+)=f(x)])
其中,[] 方括号表示指示函数。[表达式],若表达式为真,为1;否则,为0
即,考虑每一对正反例,若正例的预测值小于反例,记 1个“罚分”,若相等记 0.5个 “罚分”
损失值对应的应该是 ROC 曲线的上部分面积:若一个正例在 ROC曲线 上对应标记点的坐标为(x, y),则 x 恰是排序在其之前的反例所占的比例,即假正率。可得
A U C = 1 − l r a n k AUC = 1-l_{rank} AUC=1lrank

思考
为什么 损失率 是 ROC曲线 之上的面积?
因为 ROC曲线 是通过不断改变截断点得到的。如果正例排在反例之后,肯定会有一个截断点错误识别正反例。
同时,又因为 损失率定义的是 每一对正反例,正好对应 ROC曲线上部面积 正反例排错所对应全部的重复的点

3.5 代价敏感错误率与代价曲线

预测结果假反例和假正例会造成不同程序的损失。例如把正常人预测为患者,把患者预测为正常人。前者只是增加了后续进一步检查的麻烦,但是后者可能会影响最佳救治时间。为了权衡不同类型错误造成的损失,可为错误赋予 非均等代价(unequal cost)。引入 代价矩阵
在这里插入图片描述
真正例和真反例的代价是0,因为是正确预测的。若假反例和假正例损失程度相差 越大,则cost10和cost01的值的差别越大。
我们之前介绍的所有内容,都隐式地假设了 均等代价,只考虑犯错的次数,不考虑不同错误会造成不同后果。在 非均等代价下,我们希望的不是犯错次数更少,而是犯错代价最小
若将 0 类作为正例,1类作为反例,令 D+ 和 D- 分别表示正例和反例子集,则 代价敏感(cost-sensitive) 错误率
E ( f ; D ; c o s t ) = 1 m ( ∑ x i ∈ D + [ ( f ( x i ≠ y i ) ] ∗ c o s t 01 + ∑ x i ∈ D − [ ( f ( x i ≠ y i ) ] ∗ c o s t 10 ) E(f; D; cost) = \frac{1}{m}(\sum_{x_i\in D^+}[(f(x_i\not=y_i) ]* cost_{01} +\sum_{x_i\in D^-}[(f(x_i\not=y_i) ]* cost_{10}) E(f;D;cost)=m1(xiD+[(f(xi=yi)]cost01+xiD[(f(xi=yi)]cost10)
类似可以给出 基于分布定义的代价敏感错误率 以及一些 性能度量的代价敏感版本
若令其中的 i j 不局限于 0 和 1,则可给出 多分类任务的代价敏感性能度量

在非均等代价下,ROC曲线 不能直接反应出学习器的期望总体代价,而代价曲线可以达到这个目的
在这里插入图片描述

则正例代价显然可得
P ( + ) c o s t = p ∗ c o s t 01 p ∗ c o s t 10 + ( 1 − p ) ∗ c o s t 10 P(+)cost = \frac{p * cost_{01}}{p*cost_{10} + (1-p) * cost_{10}} P(+)cost=pcost10+(1p)cost10pcost01
c o s t n o r m = F N R ∗ p ∗ c o s t 01 + F P R ∗ ( 1 − p ) ∗ c o s t 10 p ∗ c o s t 01 + ( 1 − p ) ∗ c o s t 10 cost_{norm} = \frac{FNR * p *cost_{01} + FPR * (1-p) * cost_{10}}{p*cost_{01}+(1-p)*cost_{10}} costnorm=pcost01+(1p)cost10FNRpcost01+FPR(1p)cost10

4. 比较检验

本节用
ϵ \epsilon ϵ错误率(泛化错误率)
ϵ ^ \hat{\epsilon} ϵ^测试错误率

4.1 假设检验

假设:根据测试集的 测试错误率 估推 泛化错误率

以下这部分内容公式我没看懂,贴原文希望以后能懂
原文:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.2 交叉验证 t 检验

对于两个学习器 A 、B,使用 k 折交叉验证法测得两组错误率 1…k。若两个学习器的性能相同,则第 i 组测试集得到的测试错误率 ϵ i \epsilon_i ϵi 也应该相同
对相同折下的错误率求差值: Δ i = ϵ i A − ϵ i B \Delta_i = \epsilon^{A}_i - \epsilon^{B}_i Δi=ϵiAϵiB。根据 Δ 1 . . . Δ k \Delta_1... \Delta_k Δ1...Δk学习器A 与 学习器B 的性能相同 的假设做 t 检验,计算出差值的 均值 μ \mu μ 与 方差 σ 2 \sigma^2 σ2

τ t = ∣ k μ σ ∣ \tau_t = \left| \frac{\sqrt k \mu}{\sigma} \right| τt= σk μ
小于临界值(2.7.1),则可认为两个学习器的性能没有差别。否则,平均错误率较小的学习器性能较优

交叉验证法不同轮次的训练集可能会有一定程度重叠,导致测试错误率实际上并不独立,会导致过高估计假设成立的概率。使用 5 x 2 交叉验证 法。做 5 次 2 折交叉验证,每次 2 折交叉验证前将随机数据打乱,使 5 次交验验证中的数据划分不重复。对学习器 A 和 B,分别在第 i 次 2 折交叉验证将产生的两对测试错误率分别求差。为缓解测试错误率的非独立性:
计算第 1 次 2 折交叉验证法产生的两个结果的平均值
计算第 2 折实验结果的方差
在这里插入图片描述
在这里插入图片描述

4.3 McNemar 检验

在这里插入图片描述

4.4 Friedman检验 与 Nemenyi后续检验

交叉验证t检验 和 McNemar检验 是同一数据集上比较 2 个算法的性能。若要比较多个算法性能,可以分别两两比较。或者使用 Friedman检验
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 偏差与方差

偏差-方差分解(bias-variance decomposition):解释学习算法泛化性能

学习算法 的期望预测为:
在这里插入图片描述
假定噪声期望为 0,则泛化误差(省略推导过程):
在这里插入图片描述
可得,
泛化误差 = 偏差 + 方差 + 噪声
偏差:期望预测 与 真实结果的偏离程序
方差:度量同样大小训练集变动(数据扰动)千万的学习性能变化
噪声:学习算法能达到的期望泛化误差的下界

假定能控制学习算法的训练程度:
训练不足,拟合能力不够强,训练数据扰动不足以使学习器产生显著变化,此时偏差主导泛化错误率
训练加强,拟合能力增加,训练数据的扰动能被学习器学到,方差逐渐主导泛化错误率
训练充足后,学习器的拟合能力非常强,训练数据的轻微扰动都会导致学习器发生显著变化
若训练数据不重要的特性都被学习器学到了,则发生过拟合
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/48322.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matlab中plot的一些用法

文章目录 一、基本用法二、绘制多个数据集三、设置线型、颜色四、添加标题和标签五、添加图例六、设置轴范围七、绘制网格八、 在同一图中绘制多个子图九、绘制带误差条的图十、绘制半对数图和对数图十一、绘制填充区域图十二、综合案例 一、基本用法 x 0:0.1:10; y sin(x);…

技术成神之路:设计模式(八)责任链模式

介绍 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为设计模式&#xff0c;它允许多个对象依次处理请求&#xff0c;避免请求的发送者和接收者之间的显式耦合。该模式通过将多个可能处理请求的对象连接成一条链&#xff0c;并沿着这条链传递请求…

Cadence23导入板框时的疑难杂症

1.为啥导入板框之后元器件找不到了呢&#xff1f; 因为导入板框的时候没有勾选 增加量 &#xff0c;导致导入的板框新建了一个文件&#xff1a; 2.导入板框之后3D显示还是不没有导入呀&#xff1f; 那是因为导入的板框还带有铜皮属性&#xff0c;需要change命令把其换为板框…

【算法】算法模板

算法模板 文章目录 算法模板简介数组字符串列表数学树图动态规划 简介 博主在LeetCode网站中学习算法的过程中使用到并总结的算法模板&#xff0c;在算法方面算是刚过初学者阶段&#xff0c;竞赛分数仅2000。 为了节省读者的宝贵时间&#xff0c;部分基础的算法与模板未列出。…

51单片机13(动态数码管实验)

一、数码管动态显示原理 1、动态显示是利用减少段选线&#xff0c;分开位选线&#xff0c;利用位选线不同时选择通断&#xff0c;改变段选数据来实现的。 &#xff08;1&#xff09;多位数码管依然可以进行静态的一个显示&#xff0c;那么在前面我们介绍静态数码管的时候&…

Nginx(详解以及如何使用)

目录 1. 什么是Nginx&#xff1f; 2. 为什么使用nginx? 3. 安装nginx 3.1 安装nginx的依赖插件 3.2 下载nginx 3.3 创建一个目录作为nginx的安装路径 3.4 解压 3.5 进入解压后的目录 3.6 指定nginx的安装路径 3.7 编译和安装nginx 3.8 启动nginx 3.9 访问nginx 4. ngin…

【python】Python中闭包的是什么,闭包原理分析与应用实战

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

MongoDB教程(十四):MongoDB查询分析

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; 文章目录 引言一、查询分…

队列及其应用(用栈实现队列 力扣225)

队列概念 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有先进先出FIFO(First In First Out) 入队列&#xff1a;进行插入操作的一端称为队尾 出队列&#xff1a;进行删除操作的一端称为队头 队列的代码…

09.甜甜圈旋转加载动画 计数器

甜甜圈旋转加载动画 创建一个甜甜圈形状的旋转加载动画,可用于指示内容的加载。 为整个元素使用半透明的 border。排除一侧,它将作为甜甜圈的加载指示器。定义并使用合适的动画,使用 transform: rotate() 旋转元素。<body><div class="donut"></div&…

基于JAVA+SpringBoot+Vue+uniapp的微信小程序点餐平台

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 一、项目背景介绍&#xff1a; 点餐小程序主要为小个…

java——类变量和类方法;代码块;内部类

一、类变量和类方法 1.1、类变量 1.1.1、类变量内存布局(静态变量放在哪里&#xff1f;) 1、JVM7及以前的近代变量放在方法区中&#xff1b;JVM8以后的静态变量放在堆中 2、不管static变量在哪里&#xff0c;共识&#xff1a; 1&#xff09;Static变量是同一个类所有对象共…

昇思25天学习打卡营第17天 | 基于MindSpore实现BERT对话情绪识别

昇思25天学习打卡营第17天 | 基于MindSpore实现BERT对话情绪识别 文章目录 昇思25天学习打卡营第17天 | 基于MindSpore实现BERT对话情绪识别BERT模型对话情绪识别BERT模型的文本情绪分类任务数据集数据下载数据加载与预处理 模型构建模型验证模型推理 总结打卡 BERT模型 BERT&…

【Espressif-ESP32S3】【VScode】安装【ESP-IDF】插件及相关工具链

一、ESP-IDF简介 二、VScode安装ESP-IDF插件 三、安装ESP-IDF、ESP-IDF-Tools以及相关工具链 四、测试例程&编译烧录 五、IDF常用指令 资料下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/15Q2rl2jpIaKfj5rATkYE6g?pwdGLNG 提取码&#xff1a;GLNG 一、ESP-…

IntelliJ IDEA 2024.1 最新变化 附问卷调查 AI

IntelliJ IDEA 2024.1 最新变化 问卷调查项目在线AI IntelliJ IDEA 2024.1 最新变化关键亮点全行代码补全 Ultimate对 Java 22 功能的支持新终端 Beta编辑器中的粘性行 AI AssistantAI Assistant 改进 UltimateAI Assistant 中针对 Java 和 Kotlin 的改进代码高亮显示 Ultimate…

Android14之调试广播实例(二百二十五)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

shell脚本检查OGG同步进程状态

服务器环境中在root用户下部署了ogg同步进程&#xff0c;在oracle用户下也部署了同步进程。在不用脚本检查的情况下&#xff0c;进程需要在root用户和oracle用户下来回切换&#xff0c;比较麻烦&#xff0c;所以考虑用脚本实现&#xff0c;在root用户下一键检查root用户和oracl…

Grid Search:解锁模型优化新境界

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…

【数据结构初阶】复杂度

目录 一、时间复杂度 1、时间复杂度的概念 2、大O的渐进表示法 3、常见的时间复杂度计算举例 二、空间复杂度 1、空间复杂度的概念 2、常见的空间复杂度计算举例 三、常见复杂度对比 正文开始—— 前言 一个算法&#xff0c;并非越简洁越好&#xff0c;那该如何衡量一个算法…

源码安装 AMD GPGPU 生态 ROCm 备忘

0, 前言 如果初步接触 AMD这套&#xff0c;可以先在ubuntu上使用apt工具安装&#xff0c;并针对特定感兴趣的模块从源码编译安装替换&#xff0c;并开展研究。对整体感兴趣时可以考虑从源码编译安装整个ROCm生态。 1, 预制二进制通过apt 安装 待补。。。 2, 从源码安装 sudo …