使用 OpenCV 和 YOLO 模型进行实时目标检测并在视频流中显示检测结果

文章目录

  • Github
  • 官网
  • 简介
  • 视频帧推理
    • 视频设备ID
    • 安装依赖
  • 检测示例
  • 分类示例
  • 姿势估计

Github

  • https://github.com/ultralytics/ultralytics

官网

  • https://docs.ultralytics.com/zh
  • https://docs.ultralytics.com/zh/quickstart/

简介

Ultralytics 是一个软件公司,专注于开发计算机视觉和深度学习工具。他们的主要产品是 YOLOv5,这是一个快速、高效的目标检测模型,特别适用于实时应用。YOLOv5 是对经典的 YOLO(You Only Look Once)系列模型的升级,采用了现代化的深度学习技术和优化策略,以提供更好的性能和更低的计算成本。

Ultralytics 还开发了其他一些工具和库,帮助研究人员和开发者在计算机视觉和深度学习领域更高效地工作。他们的开源项目广受欢迎,为社区提供了强大的工具和资源,以推动计算机视觉技术的发展和应用。

视频帧推理

使用 OpenCV (cv2)YOLOv8 对视频帧进行推理。本脚本示例需要安装必要的软件包 (opencv-pythonultralytics).

视频设备ID

注: Mac 环境下可以使用 ffmpeg 进行搜索视频设备,当然此步骤可以省略盲填一个编号如果不出视频可再换设备编号。

brew install ffmpeg
# 列出视频的设备ID
ffmpeg -f avfoundation -list_devices true -i ""

在这里插入图片描述

注意: [0] FaceTime HD Camera,deviceID := 0 是电脑摄像头。

安装依赖

# 怕包冲突可以清理当前环境所有安装包
pip freeze | xargs pip uninstall -y
pip install --upgrade pip
pip install opencv-python
pip install ultralytics

检测示例

YOLOv8 这里显示的是经过预训练的检测模型。Detect、Segment 和 Pose 模型是在COCO数据集上预先训练的,而 Classify 模型则是在ImageNet数据集上预先训练的。

首次使用时,模型会自动从最新的Ultralytics 版本下载。

模型尺寸(像素)mAPval 50-95速度 CPU ONNX(毫秒)速度 A100 TensorRT(毫秒)params (M)FLOPs (B) at 640
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8
import cv2from ultralytics import YOLO# 加载 YOLOv8 模型
model = YOLO("yolov8n.pt")# 打开视频文件
# cap = cv2.VideoCapture("path/to/your/video/file.mp4")
# 或使用设备“0”打开视频捕获设备读取帧
cap = cv2.VideoCapture(0)# 设置视频帧大小
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 200)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 200)title = "YOLOv8 Inference"
# 设置窗口位置
cv2.namedWindow(title, cv2.WINDOW_NORMAL)
cv2.moveWindow(title, 200, 200)# 循环播放视频帧
while cap.isOpened():# 从视频中读取一帧success, frame = cap.read()if success:# 在框架上运行 YOLOv8 推理results = model(frame)# 在框架上可视化结果annotated_frame = results[0].plot()# 显示带标注的框架cv2.imshow(title, annotated_frame)# 如果按下“q”,则中断循环if cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# 如果到达视频末尾,则中断循环break# 释放视频捕获对象并关闭显示窗口
cap.release()
cv2.destroyAllWindows()
  • 输出结果

在这里插入图片描述
在这里插入图片描述

分类示例

模型尺寸(像素)acc top1acc top5速度 CPU ONNX(毫秒)速度 A100 TensorRT(毫秒)params (M)FLOPs (B) at 640
YOLOv8n-cls22469.088.312.90.312.74.3
YOLOv8s-cls22473.891.723.40.356.413.5
YOLOv8m-cls22476.893.585.40.6217.042.7
YOLOv8l-cls22476.893.5163.00.8737.599.7
YOLOv8x-cls22479.094.6232.01.0157.4154.8
  • 直接替换示例代码中的模型就可以。
model = YOLO("yolov8n-cls.pt")
  • 输出结果(咖啡杯 0.78 左右)

在这里插入图片描述

姿势估计

模型尺寸(像素)50-95mAPpose 50速度 CPU ONNX(毫秒)速度 A100 TensorRT(毫秒)params (M)FLOPs (B) at 640
YOLOv8n-pose64050.480.1131.81.183.39.2
YOLOv8s-pose64060.086.2233.21.4211.630.2
YOLOv8m-pose64065.088.8456.32.0026.481.0
YOLOv8l-pose64067.690.0784.52.5944.4168.6
YOLOv8x-pose64069.290.21607.13.7369.4263.2
YOLOv8x-pose-p6128071.691.24088.710.0499.11066.4
  • 直接替换示例代码中的模型就可以。
model = YOLO("yolov8n-pose.pt")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/48167.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【中项】系统集成项目管理工程师-第2章 信息技术发展-2.2新一代信息技术及应用-2.2.1物联网与2.2.2云计算

前言:系统集成项目管理工程师专业,现分享一些教材知识点。觉得文章还不错的喜欢点赞收藏的同时帮忙点点关注。 软考同样是国家人社部和工信部组织的国家级考试,全称为“全国计算机与软件专业技术资格(水平)考试”&…

Linux下如何安装配置Graylog日志管理工具

Graylog是一个开源的日志管理工具,可以帮助我们收集、存储和分析大量的日志数据。它提供了强大的搜索、过滤和可视化功能,可以帮助我们轻松地监控系统和应用程序的运行情况。 在Linux系统下安装和配置Graylog主要包括以下几个步骤: 准备安装…

【Spark On Hive】—— 基于电商数据分析的项目实战

文章目录 Spark On Hive 详解一、项目配置1. 创建工程2. 配置文件3. 工程目录 二、代码实现2.1 Class SparkFactory2.2 Object SparkFactory Spark On Hive 详解 本文基于Spark重构基于Hive的电商数据分析的项目需求,在重构的同时对Spark On Hive的全流程进行详细的…

【人工智能】机器学习 -- 决策树(乳腺肿瘤数)

目录 一、使用Python开发工具,运行对iris数据进行分类的例子程序dtree.py,熟悉sklearn机器实习开源库。 二、登录https://archive-beta.ics.uci.edu/ 三、使用sklearn机器学习开源库,使用决策树对breast-cancer-wisconsin.data进行分类。 …

Linux 注意事项

Linux 与 Windows 是两个相互独立的操作系统,两者有较大差距: 1.1 Linux 严格区分大小写(Windows不严格区分大小写); 1.2 Linux 中所有内容,硬件设备都以文件形式保存在 /dev 目录下(万物皆文件…

攻防世界 re新手模式

Reversing-x64Elf-100 64位ida打开 看if语句,根据i的不同,选择不同的数组,后面的2*i/3选择数组中的某一个元素,我们输入的是a1 直接逆向得到就行 二维字符数组写法:前一个是代表有几个字符串,后一个是每…

Logback日志异步打印接入指南,输出自定义业务数据

背景 随着应用的请求量上升,日志输出量也会成线性比例的上升,给磁盘IO带来压力与性能瓶颈。应用也遇到了线程池满,是因为大量线程卡在输出日志。为了缓解日志同步打印,会采取异步打印日志。这样会引起日志中的追踪id丢失&#xf…

鸿蒙OS开发工具 DevEco Studio(4.0)安装教程

1.旧版本下载地址【HarmonyOS】HUAWEI DevEco Studio 下载地址汇总_deveco studio历史版本-CSDN博客 2.解压安装包,双击安装程序 3.打开后点击Next 4.点击“Browse...”选择路径,然后点击“Next” 5.勾选,点击“Next” 6.默认,直…

NASA数据集——宝瓶座天体微波发射图辅助数据集 V1.0

Aquarius Celestial Sky Microwave Emission Map Ancillary Dataset V1.0 宝瓶座天体微波发射图辅助数据集 V1.0 简介 本数据集包含三张 L 波段(波长 21 厘米)天体("银河系")亮度温度图,用于处理美国航天…

maven 私服搭建(tar+docker)

maven私服搭建 一、linux安装nexus1、工具下载 二、 docker 搭建nexus1、镜像下载创建目录2、运行nexus3、访问确认,修改默认密码,禁用匿名用户登录4、创建仓库5、创建hostd仓库6、创建Blob Stores7、创建docker私服1、创建proxy仓库2、创建hotsed本地仓…

netcat 使用

GPT-4o (OpenAI) Netcat (通常缩写为nc) 是一个功能强大的网络工具,可以方便地读写网络连接。它被广泛用于漏洞测试、网络调试和数据传输。Netcat 可以作为客户端,也可以作为服务器使用。 以下是一些常见的 Netcat 用法:基础用法 连接到服务…

ISP代理和双ISP代理:区别和优势

随着互联网技术的不断发展和普及,网络代理服务成为众多用户保护隐私、提高网络性能、增强安全性的重要工具。其中,ISP代理和双ISP代理是两种常见的网络代理服务形式。本文将详细探讨ISP代理和双ISP代理的区别和优势,以便用户更好地了解并选择…

C/C++ json库

文章目录 一、介绍1.1 json 介绍 二、C/C json 库选型2.1 选型范围2.2 jsoncpp2.2.2 jsoncpp 编译和交叉编译 2.3 rapidjson2.4 nlohmann/json2.5 sonic-cpp 五、常见问题5.1 jsoncpp 中关于浮点数的控制和中文显示问题5.2 jsoncpp序列化double类型时精度损失问题的解决办法 一…

算法学习笔记(Hello算法)—— 初识算法

1、相关链接 Hello算法:Hello 算法 (hello-algo.com) 2、算法是什么 2.1 算法定义 算法是一系列明确、有限且有效的步骤或指令的集合,用于解决特定问题或执行特定任务。 算法具有以下基本特征: 输入:算法至少有一个输入&…

【JavaScript 算法】图的遍历:理解图的结构

🔥 个人主页:空白诗 文章目录 一、深度优先搜索(DFS)深度优先搜索的步骤深度优先搜索的JavaScript实现 二、广度优先搜索(BFS)广度优先搜索的步骤 三、应用场景四、总结 图的遍历是图论中的基本操作之一&am…

院内影像一体化平台PACS源码,C#语言的PACS/RIS系统,二级医院应用案例

全院级PACS系统源码,一体化应用系统整合,满足放射、超声、内窥镜中心、病理、检验等多个科室的工作流程和需求,为不同科室提供专业的解决方案,实现了全院乃至区域内信息互联互通、数据统一存储与管理等功能,做到以病人…

浪漫情怀:红酒中的诗意与情感

在生活的点滴细节中,总有些元素能触动我们内心较柔软的地方,唤起那份深深的浪漫情怀。而红酒,便是这其中的一种神奇媒介。它以其不同的色泽、香气和口感,让人沉醉其中,感受那份诗意与情感的交织。今天,就让…

C语言 | Leetcode C语言题解之第237题删除链表中的节点

题目: 题解: /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/void deleteNode(struct ListNode* node) {struct ListNode * p node->next;int temp;temp node->val;node->val…

常见排序算法总结

文章目录 比较排序冒泡排序选择排序插入排序归并排序快速排序堆排序希尔排序 非比较排序(桶排序)计数排序基数排序 比较排序 冒泡排序 嵌套循环,每次内层循环执行时,数组的每两个元素交换,将一个最大/小的数排到数组…

AIGC代码学习记录

本文主要记录不同的SD模型代码中实现的一些细节,如text2img,img2img,inpaint等等 1. 文生图 第一步:生成随机的latent feature (n,4,64,64);n为生成的图片个数; 第二步:对于prompt用clip生成特征,正向提示…