C++11新特性--委托构造和继承构造函数

1. 委托构造函数

        委托构造函数允许使用同一个类中的一个构造函数调用其它的构造函数,从而简化相关变量的初始化。下面举例说明:

#include <iostream>
using namespace std;class Test
{
public:Test() {};Test(int max){this->m_max = max > 0 ? max : 100;}Test(int max, int min){this->m_max = max > 0 ? max : 100;              // 冗余代码this->m_min = min > 0 && min < max ? min : 1;   }Test(int max, int min, int mid){this->m_max = max > 0 ? max : 100;             // 冗余代码this->m_min = min > 0 && min < max ? min : 1;  // 冗余代码this->m_middle = mid < max && mid > min ? mid : 50;}int m_min;int m_max;int m_middle;
};int main()
{Test t(90, 30, 60);cout << "min: " << t.m_min << ", middle: " << t.m_middle << ", max: " << t.m_max << endl;return 0;
}

        在上面的程序中有三个构造函数,但是这三个函数中都有重复的代码,在C++11之前构造函数是不能调用构造函数的,加入了委托构造之后,我们就可以轻松地完成代码的优化了:

#include <iostream>
using namespace std;class Test
{
public:Test() {};Test(int max){this->m_max = max > 0 ? max : 100;}Test(int max, int min):Test(max){this->m_min = min > 0 && min < max ? min : 1;}Test(int max, int min, int mid):Test(max, min){this->m_middle = mid < max && mid > min ? mid : 50;}int m_min;int m_max;int m_middle;
};int main()
{Test t(90, 30, 60);cout << "min: " << t.m_min << ", middle: " << t.m_middle << ", max: " << t.m_max << endl;return 0;
}

        在修改之后的代码中可以看到,重复的代码全部没有了,并且在一个构造函数中调用了其他的构造函数用于相关数据的初始化,相当于是一个链式调用。在使用委托构造函数的时候还需要注意一些几个问题:

  • 这种链式的构造函数调用不能形成一个闭环(死循环),否则会在运行期抛异常。
  • 如果要进行多层构造函数的链式调用,建议将构造函数的调用的写在初始列表中而不是函数体内部,否则编译器会提示形参的重复定义。
Test(int max)
{this->m_max = max > 0 ? max : 100;
}Test(int max, int min)
{Test(max);	// error, 此处编译器会报错, 提示形参max被重复定义this->m_min = min > 0 && min < max ? min : 1;
}
  • 在初始化列表中调用了代理构造函数初始化某个类成员变量之后,就不能在初始化列表中再次初始化这个变量了。
// 错误, 使用了委托构造函数就不能再次m_max初始化了
Test(int max, int min) : Test(max), m_max(max)
{this->m_min = min > 0 && min < max ? min : 1;
}

2. 继承构造函数

        C++11中提供的继承构造函数可以让派生类直接使用基类的构造函数,而无需自己再写构造函数,尤其是在基类有很多构造函数的情况下,可以极大地简化派生类构造函数的编写。先来看没有继承构造函数之前的处理方式:

#include <iostream>
#include <string>
using namespace std;class Base
{
public:Base(int i) :m_i(i) {}Base(int i, double j) :m_i(i), m_j(j) {}Base(int i, double j, string k) :m_i(i), m_j(j), m_k(k) {}int m_i;double m_j;string m_k;
};class Child : public Base
{
public:Child(int i) :Base(i) {}Child(int i, double j) :Base(i, j) {}Child(int i, double j, string k) :Base(i, j, k) {}
};int main()
{Child c(520, 13.14, "i love you");cout << "int: " << c.m_i << ", double: " << c.m_j << ", string: " << c.m_k << endl;return 0;
}

        通过测试代码可以看出,在子类中初始化从基类继承的类成员,需要在子类中重新定义和基类一致的构造函数,这是非常繁琐的,C++11中通过添加继承构造函数这个新特性完美的解决了这个问题,使得代码更加精简。

        继承构造函数的使用方法是这样的:通过使用using 类名::构造函数名(其实类名和构造函数名是一样的)来声明使用基类的构造函数,这样子类中就可以不定义相同的构造函数了,直接使用基类的构造函数来构造派生类对象。

#include <iostream>
#include <string>
using namespace std;class Base
{
public:Base(int i) :m_i(i) {}Base(int i, double j) :m_i(i), m_j(j) {}Base(int i, double j, string k) :m_i(i), m_j(j), m_k(k) {}int m_i;double m_j;string m_k;
};class Child : public Base
{
public:using Base::Base;
};int main()
{Child c1(520, 13.14);cout << "int: " << c1.m_i << ", double: " << c1.m_j << endl;Child c2(520, 13.14, "i love you");cout << "int: " << c2.m_i << ", double: " << c2.m_j << ", string: " << c2.m_k << endl;return 0;
}

        在修改之后的子类中,没有添加任何构造函数,而是添加了using Base::Base;这样就可以在子类中直接继承父类的所有的构造函数,通过他们去构造子类对象了。

        另外如果在子类中隐藏了父类中的同名函数,也可以通过using的方式在子类中使用基类中的这些父类函数:

#include <iostream>
#include <string>
using namespace std;class Base
{
public:Base(int i) :m_i(i) {}Base(int i, double j) :m_i(i), m_j(j) {}Base(int i, double j, string k) :m_i(i), m_j(j), m_k(k) {}void func(int i){cout << "base class: i = " << i << endl;}void func(int i, string str){cout << "base class: i = " << i << ", str = " << str << endl;}int m_i;double m_j;string m_k;
};class Child : public Base
{
public:using Base::Base;using Base::func;void func(){cout << "child class: i'am luffy!!!" << endl;}
};int main()
{Child c(250);c.func();c.func(19);c.func(19, "luffy");return 0;
}

上述示例代码输出的结果为:

child class: i'am luffy!!!
base class: i = 19
base class: i = 19, str = luffy

        子类中的func()函数隐藏了基类中的两个func()因此默认情况下通过子类对象只能调用无参的func(),在上面的子类代码中添加了using Base::func;之后,就可以通过子类对象直接调用父类中被隐藏的带参func()函数了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/47517.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

具有I2S输出的多模数字麦克风ICS-43434咪头LR引脚接地或电源WS接LRCLK

外观和丝印 ICS-43434麦克风3.50 mm x 2.65 mm&#xff0c;丝印为434&#xff08;图片不好拍&#xff0c;隐约可见434&#xff09; 一般描述 ICS-43434 是一款数字 IS 输出底部收音孔麦克风。完整的 ICS-43434 解决方案包括 MEMS 传感器、信号调理、模数转换器、抽取和抗混叠滤…

在mybatis-plus中关于@insert注解自定义批处理sql导致其雪花算法失效而无法自动生成id的解决方法

受到这位作者的启发 > 原文在点这里 为了自己实现批量插入&#xff0c;我在mapper层使用insert注解写了一段自定义sql //自定义的批量插入方法 Insert("<script>" "insert into rpt_material_hour(id,sample_time,rounding_time,cur_month,machine_no…

Elasticsearch 批量更新

Elasticsearch 批量更新 准备条件查询数据批量更新 准备条件 以下查询操作都基于索引crm_flow_info来操作&#xff0c;索引已经建过了&#xff0c;本文主要讲Elasticsearch批量更新指定字段语句&#xff0c;下面开始写更新语句执行更新啦&#xff01; 查询数据 查询指定shif…

leetcode_80. 删除有序数组中的重复项 II

leetcode_80. 删除有序数组中的重复项 II leetcode链接 题目描述 给你一个有序数组 nums &#xff0c;请你** 原地** 删除重复出现的元素&#xff0c;使得出现次数超过两次的元素只出现两次 &#xff0c;返回删除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须…

大龄程序员的出路在哪里?

对于许多资深程序员而言&#xff0c;年龄并非职业发展的桎梏&#xff0c;反而如同陈年的美酒&#xff0c;随着时间的流逝愈发醇厚。他们手握的是丰富的经验和不断进阶的技能&#xff0c;而这些都为他们打开了职业发展的无数扇大门。让我们一同探索这些令人心动的可能性吧&#…

视频号矩阵系统,AI自动生成文案,实现批量上传视频和定时发布

在数字化浪潮席卷全球的今天&#xff0c;视频内容已成为信息传播的重要载体。然而&#xff0c;对于众多自媒体创作者和企业而言&#xff0c;如何高效、精准地发布视频内容&#xff0c;依然是一个不小的挑战。幸运的是&#xff0c;随着技术的不断进步&#xff0c;视频号矩阵系统…

SQL概述及其规则与规范

SQL概述及其规则与规范 1.SQL概述 1.1 SQL背景知识 1946年&#xff0c;世界第一台电脑诞生&#xff0c;如今&#xff0c;互联网已经非常壮大&#xff0c;在这几十年间互联网得到了飞速的发展&#xff0c;无数的技术在其中起起伏伏&#xff0c;但是有一门技术从未消失&#xf…

Kafka消息队列python开发环境搭建

目录 引言 Kafka 的核心概念和组件 Kafka 的主要特性 使用场景 申请云服务器 安装docker及docker-compose VSCODE配置 开发环境搭建 搭建Kafka的python编程环境 Kafka的python编程示例 引言 Apache Kafka 是一个分布式流处理平台&#xff0c;由 LinkedIn 开发并在 2…

SpringBoot整合阿里云RocketMQ对接,商业版

1.需要阿里云开通商业版RocketMQ 普通消息新建普通主题,普通组,延迟消息新建延迟消息主题,延迟消息组 2.结构目录 3.引入依赖 <!--阿里云RocketMq整合--><dependency><groupId>com.aliyun.openservices</groupId><artifactId>ons-client</…

Qt类 | QLabel类详解

文章目录 一、QLabel类介绍二、Properties&#xff08;属性&#xff09;三、Public Functions&#xff08;公共函数&#xff09;1.构造函数2.alignment与setAlignment函数 -- 标签内容的对齐方式3.buddy与setBuddy函数 -- QLabel关联的伙伴控件4.hasScaledContents与setScaledC…

基于YOLOv8深度学习的水果智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、卷积神经网络

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

End-to-End Object Detection with Transformers【目标检测-方法详细解读】

摘要 我们提出了一种新的方法,将目标检测视为一个直接的集合预测问题。我们的方法简化了检测流程,有效地消除了许多手工设计的组件,如非极大值抑制程序或锚生成,这些组件显式编码了我们关于任务的先验知识。新框架的主要成分,称为DEtection TRansformer或DETR,是一个基于…

下载工具 -- Internet Download Manager(IDM) v6.42 build 14 绿色特别版

软件简介 Internet Download Manager&#xff08;IDM&#xff09;是一款功能强大的下载工具&#xff0c;它可以帮助用户更高效、更稳定地下载网络上的各种文件。IDM支持多线程下载技术&#xff0c;可以将文件分割成多个部分同时下载&#xff0c;从而显著提高下载速度。此外&am…

C#字符串基本操作

1、代码 //1、创建字符串&#xff08;获取长度&#xff09;string str "Hello, World!";Console.WriteLine($"string:{str},length:{str.Length}");//2、字符串连接string str1 "Hello, ";string str2 "World!";Console.WriteLine…

在 Windows 11/10/8 上恢复误删除文件的最佳方法

如果您刚刚在计算机上重新安装了 Windows 操作系统&#xff0c;结果硬盘上的所有文件都消失了&#xff0c;有没有办法从 Windows 11/10 中恢复误删除的文件&#xff1f; 许多因素都可能导致 PC 上的文件被删除。除了重新安装操作系统外&#xff0c;其他常见原因还包括意外删除…

MAC 数据恢复软件: STELLAR Data Recovery For MAC V. 12.1 更多增强功能

天津鸿萌科贸发展有限公司是 Stellar 系列软件的授权代理商。 STELLAR Data Recovery For MAC 该数据恢复软件可从任何存储驱动器、清空的回收站以及崩溃或无法启动的 Mac 设备中恢复丢失或删除的文件。 轻松恢复已删除的文档、照片、音频文件和视频。自定义扫描以帮助恢复特…

Vue.js 生命周期详解:从创建到销毁的全过程

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…

【BUG】已解决:java.lang.reflect.InvocationTargetException

已解决&#xff1a;java.lang.reflect.InvocationTargetException 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页&#xff0c;我是博主英杰&#xff0c;211科班出身&#xff0c;就职于医疗科技公司&#xff0c;热衷分享知识&#xff0c;武汉城市开发…

STM32 IAP 需要关注的一些事

1、首先要知道STM32的程序是如何分布在FLASH中的。 2、升级的时候涉及到两个程序&#xff0c;一个是bootloader&#xff0c;一个是user程序&#xff0c;这两个程序的功能分别的什么作用的&#xff1f; 3、编译的固件是怎么分布的&#xff1f;通过那个配置文件去指导编译器去排布…

Spring Boot集成kudu快速入门Demo

1.什么是kudu 在Kudu出现前&#xff0c;由于传统存储系统的局限性&#xff0c;对于数据的快速输入和分析还没有一个完美的解决方案&#xff0c;要么以缓慢的数据输入为代价实现快速分析&#xff0c;要么以缓慢的分析为代价实现数据快速输入。随着快速输入和分析场景越来越多&a…