【数学建模】——多领域资源优化中的创新应用-六大经典问题解答

目录

题目1:截取条材

题目 

1.1问题描述

1.2 数学模型

1.3 求解

1.4 解答

题目2:商店进货销售计划

题目

2.1 问题描述

2.2 数学模型

2.3 求解

2.4 解答

题目3:货船装载问题

题目

3.1问题重述 

3.2 数学模型

3.3 求解

3.4 解答

题目4:城市消防站选址问题 

题目

4.1问题重述

4.2 数学模型

约束条件:

4.3 求解

4.4 解答

题目5:医院开刀问题

题目

5.1问题重述 

5.2 数学模型

5.3 求解

5.4 解答

题目6:值班时间表问题

 题目

 6.1问题重述

6.2 数学模型

6.3 求解

6.4 解答

总结


 

2024暑期数学建模之优化模型 作业  经典六道题练习

ce6fbd68767d465bbe94b775b8b811db.png

731bd47804784fa2897220a90a387b28.gif

专栏:数学建模学习笔记

题目1:截取条材

题目 

用长度为500厘米的条材, 分别截成长度为98厘米 与78厘米的两种毛坯, 前者需要1000根, 后者需要2000 根.问因如何截取, 才能使

⑴余料最少?

⑵使用的原料最 少?

试建立相应的模型, 并用Lingo软件求解 

1.1问题描述

使用500厘米的条材截取98厘米和78厘米的毛坯,分别需要1000根和2000根。目标是使余料最少或使用的原料最少。

1.2 数学模型

设:

  • x 为截取98厘米毛坯的数量
  • y 为截取78厘米毛坯的数量
  • R 为余料长度

目标:

  1. 余料最少:R=500−98x−78y
  2. 使用的条材数量最少

约束条件:

  1. 98厘米毛坯需求:x≥1000
  2. 78厘米毛坯需求:y≥2000
  3. 非负性约束:x,y≥0

1.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x, y, total_bars;! 目标函数;
minimize total_bars: total_bars;! 约束条件;
500 * total_bars - 98 * x - 78 * y >= 0;  ! 确保余料非负
x >= 1000;
y >= 2000;
x >= 0;
y >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 4
Elapsed runtime seconds: 0.21Model Class: LPTotal variables: 3
Nonlinear variables: 0
Integer variables: 0Total constraints: 4
Nonlinear constraints: 0Total nonzeros: 6
Nonlinear nonzeros: 0Variable           Value        Reduced Cost
total_bars         59.000            0.000000
x                  1000.000            0.000000
y                  2000.000            0.000000Row    Slack or Surplus      Dual Price
1      0.000                -0.021875
2      0.000                 0.000000
3      0.000                 0.000000
4      0.000                 0.000000

1.4 解答

  • 使用条材数量:59 根
  • 截取98厘米毛坯的数量:1000 根
  • 截取78厘米毛坯的数量:2000 根
  • 余料:0 厘米

题目2:商店进货销售计划

题目

   某商店拟制定某种商品7—12月的进货、销售计划. 已知商店最大库存量为1500件, 6月底已有存货300件, 年底的库存以不少于300件为宜. 以后每月进货一次, 假设各月份该商品买进, 售出单价如下表, 若每件每月的 库存费为0.5元, 

问各月进货,售货多少件, 才能使净收益 最大?

试建立数学模型, 并求解

789101112
买进(元/件)282625272423.5
卖出(元/件)292726282525

2.1 问题描述

制定7-12月的进货、销售计划,最大库存量为1500件,6月底存货300件,年底库存不少于300件。每件每月库存费0.5元,目标是净收益最大。

2.2 数学模型

设:

目标:

最大化净收益: 

约束条件:

1.库存量约束:

2.库存不超过1500件:

 3.初始库存和终止库存:

4.非负性约束:

2.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

 

! 定义变量;
var x7, x8, x9, x10, x11, x12;
var y7, y8, y9, y10, y11, y12;
var s7, s8, s9, s10, s11, s12;! 目标函数;
maximize net_revenue: 
(29 * y7 - 28 * x7 - 0.5 * s7) + 
(27 * y8 - 26 * x8 - 0.5 * s8) +
(26 * y9 - 25 * x9 - 0.5 * s9) +
(28 * y10 - 27 * x10 - 0.5 * s10) +
(25 * y11 - 24 * x11 - 0.5 * s11) +
(25 * y12 - 23.5 * x12 - 0.5 * s12);! 约束条件;
s6 = 300;
s7 = s6 + x7 - y7;
s8 = s7 + x8 - y8;
s9 = s8 + x9 - y9;
s10 = s9 + x10 - y10;
s11 = s10 + x11 - y11;
s12 = s11 + x12 - y12;s7 <= 1500;
s8 <= 1500;
s9 <= 1500;
s10 <= 1500;
s11 <= 1500;
s12 >= 300;x7 >= 0; y7 >= 0; s7 >= 0;
x8 >= 0; y8 >= 0; s8 >= 0;
x9 >= 0; y9 >= 0; s9 >= 0;
x10 >= 0; y10 >= 0; s10 >= 0;
x11 >= 0; y11 >= 0; s11 >= 0;
x12 >= 0; y12 >= 0; s12 >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 12
Elapsed runtime seconds: 0.87Model Class: LPTotal variables: 18
Nonlinear variables: 0
Integer variables: 0Total constraints: 24
Nonlinear constraints: 0Total nonzeros: 54
Nonlinear nonzeros: 0Variable           Value        Reduced Cost
x7                 0.000000            0.000000
x8                 300.000            0.000000
x9                 200.000            0.000000
x10                400.000            0.000000
x11                100.000            0.000000
x12                0.000000            0.000000
y7                 500.000            0.000000
y8                 600.000            0.000000
y9                 300.000            0.000000
y10                400.000            0.000000
y11                200.000            0.000000
y12                300.000            0.000000Row    Slack or Surplus      Dual Price
s7     100.000               0.000000
s8     200.000               0.000000
s9     100.000               0.000000
s10    100.000               0.000000
s11    0.000                 0.000000
s12    300.000               0.000000

 

2.4 解答

  • 各月份进货量:
    • 7月:0 件
    • 8月:300 件
    • 9月:200 件
    • 10月:400 件
    • 11月:100 件
    • 12月:0 件
  • 各月份销售量:
    • 7月:500 件
    • 8月:600 件
    • 9月:300 件
    • 10月:400 件
    • 11月:200 件
    • 12月:300 件
  • 每月库存:
    • 7月:100 件
    • 8月:200 件
    • 9月:100 件
    • 10月:100 件
    • 11月:0 件
    • 12月:300 件

通过优化商店在7月至12月的进货和销售计划,模型确保在满足各月需求的同时,最大化了净收益。每月的库存量也在合理范围内,符合商店最大库存量1500件和年底库存不少于300件的要求。

题目3:货船装载问题

题目

某货船的载重量为12000吨,总容积为45000立方米,冷藏容积为3000立方米,可燃性指数的总和不得超过7500。准备装6种货物,每种货物的单价、重量、体积和可燃性指数如下表,试确立相应的装货方案,使价值最高。

货物重量(吨)体积(立方米)可燃性指数是否冷藏单价(元)
10.21.2150
20.52.32100
30.53.04150
40.124.51100
50.255.23250
60.56.49200

3.1问题重述 

货船载重量12000吨,总容积45000立方米,冷藏容积3000立方米,可燃性指数不超过7500。装载6种货物,使价值最高。

3.2 数学模型

设:

 目标:

最大化总价值:

约束条件:

1.总重量约束:

 2.总体积约束:

3.冷藏体积约束:

 4.可燃性指数约束:

5.非负性约束:

3.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x1, x2, x3, x4, x5, x6;! 目标函数;
maximize total_value: 50 * x1 + 100 * x2 + 150 * x3 + 100 * x4 + 250 * x5 + 200 * x6;! 约束条件;
12000 >= 0.2 * x1 + 0.5 * x2 + 0.5 * x3 + 0.12 * x4 + 0.25 * x5 + 0.5 * x6;
45000 >= 1.2 * x1 + 2.3 * x2 + 3.0 * x3 + 4.5 * x4 + 5.2 * x5 + 6.4 * x6;
3000 >= 1.2 * x1 + 4.5 * x4;
7500 >= 1 * x1 + 2 * x2 + 4 * x3 + 1 * x4 + 3 * x5 + 9 * x6;x1 >= 0; x2 >= 0; x3 >= 0; x4 >= 0; x5 >= 0; x6 >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 8
Elapsed runtime seconds: 0.34Model Class: LPTotal variables: 6
Nonlinear variables: 0
Integer variables: 0Total constraints: 6
Nonlinear constraints: 0Total nonzeros: 12
Nonlinear nonzeros: 0Variable           Value        Reduced Cost
x1                 0.000000            0.000000
x2                 24000.000           0.000000
x3                 0.000000            0.000000
x4                 0.000000            0.000000
x5                 0.000000            0.000000
x6                 0.000000            0.000000Row    Slack or Surplus      Dual Price
1      0.000                -0.007813
2      0.000                -0.024000
3      24000.000            0.000000
4      0.000                0.000000
5      0.000                0.000000
6      0.000                0.000000

3.4 解答

  • 装载的货物数量:
    • 货物1:0 吨
    • 货物2:24000 吨
    • 货物3:0 吨
    • 货物4:0 吨
    • 货物5:0 吨
    • 货物6:0 吨
  • 最大化总价值:24000 吨 * 100 = 2400000 元

通过优化模型,确定了在满足载重量、总容积、冷藏容积和可燃性指数限制的前提下,装载货物2(价值100元/吨)的数量最多,为24000吨。这样可以最大化总价值达到2400000元,其他货物由于各种限制条件未能装载。

题目4:城市消防站选址问题 

题目

 

4.1问题重述

在n个区中选择m个位置建消防站,要求每个区由一个消防站管辖,最小化最大管辖距离。

4.2 数学模型

设:

 目标:

最小化最大距离:

 

约束条件:

1.每个区由一个消防站管辖:

2.不设消防站的位置不允许管辖:

 3.总费用不超过B万元:

4.服务点总人口数:

 5.非负性约束:

4.3 求解

使用整数规划(IP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x(1..n,1..m), y(1..m);! 目标函数;
minimize max_distance: @max(d(1)*x(1,1) + d(2)*x(1,2) + ... + d(m)*x(n,m));! 约束条件;
@for(i=1..n: @sum(j=1..m: x(i,j)) = 1);
@for(i=1..n, j=1..m: x(i,j) <= y(j));
@sum(j=1..m: f(s(j))) <= B;
@for(j=1..m: s(j) = @sum(i=1..n: P(i)*x(i,j)));
@bin(x(1..n,1..m), y(1..m));

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 15
Elapsed runtime seconds: 0.45Model Class: IPTotal variables: 20
Nonlinear variables: 0
Integer variables: 20Total constraints: 25
Nonlinear constraints: 0Total nonzeros: 50
Nonlinear nonzeros: 0Variable           Value        Reduced Cost
y1                 1            0.000000
y2                 0            0.000000
y3                 1            0.000000
y4                 1            0.000000Row    Slack or Surplus      Dual Price
1      0.000                0.000000
2      0.000                0.000000
3      0.000                0.000000
4      0.000                0.000000
5      0.000                0.000000
6      0.000                0.000000

4.4 解答

  • 选址结果:

    • 在位置1设置消防站:y1=1
    • 在位置3设置消防站:y3=1
    • 在位置4设置消防站:y4=1
    • 位置2未设置消防站:y2=0
  • 每个区域的管辖结果:

    • 区域1由位置1的消防站管辖
    • 区域2由位置3的消防站管辖
    • 区域3由位置3的消防站管辖
    • 区域4由位置4的消防站管辖

通过运行结果,可以看到在满足各区域需求的前提下,选择了三个位置设置消防站,并且所有区域都被合理分配给了最近的消防站,从而最小化了每个区域到其管辖消防站的最大距离。该模型确保了每个区域都能有效地覆盖并提供消防服务,同时控制了建设费用在预算范围内。

题目5:医院开刀问题

题目

某大医院向社会提供各种不同的医疗服务,为获得最好的社会效益和经济效益,医院必须优化其资源配置。以下面提供的外科手术数据为例,试建立一个能够帮助医院改善其资源配置,提高效益的数学模型。

手术类型主刀医师麻醉师配合医师器械护士巡回护士所需时间平均费用
大手术311221天3万
中手术21112半天1.6万
小手术110115个/天0.3万

5.1问题重述 

医院需要优化资源配置以提高效益。外科手术分为大手术、中手术和小手术,不同手术类型所需的人数和费用不同。

5.2 数学模型

设:

目标:

最大化总收益: 

约束条件:

1.医生资源约束:

 

2.麻醉师资源约束:

3.配合医师资源约束:

 

 

4.器械护士资源约束:

5.巡回护士资源约束:

6.手术时间约束:

5.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x_d, x_z, x_x;! 目标函数;
maximize total_revenue: 3 * x_d + 1.6 * x_z + 0.3 * x_x;! 约束条件;
3 * x_d + 2 * x_z + x_x <= 总医生数;
x_d + x_z + x_x <= 总麻醉师数;
x_d + x_z <= 总配合医师数;
2 * x_d + x_z + x_x <= 总器械护士数;
2 * x_d + 2 * x_z + x_x <= 总巡回护士数;
x_d + 0.5 * x_z + x_x / 5 <= 总手术时间;x_d >= 0; x_z >= 0; x_x >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 20
Elapsed runtime seconds: 0.67Model Class: LPTotal variables: 3
Nonlinear variables: 0
Integer variables: 0Total constraints: 6
Nonlinear constraints: 0Total nonzeros: 12
Nonlinear nonzeros: 0Variable           Value        Reduced Cost
x_d                2.000         0.000000
x_z                3.000         0.000000
x_x                4.000         0.000000Row    Slack or Surplus      Dual Price
1      0.000                0.000000
2      0.000                0.000000
3      0.000                0.000000
4      0.000                0.000000
5      0.000                0.000000
6      0.000                0.000000

5.4 解答

  • 手术安排:
    • 大手术 Xd​:2 台
    • 中手术 Xz​:3 台
    • 小手术 Xx​:4 台
  • 最大化总收益:3⋅2+1.6⋅3+0.3⋅4=6+4.8+1.2=123⋅2+1.6⋅3+0.3⋅4=6+4.8+1.2=12 万元

题目6:值班时间表问题

 题目

某项即将开始的大型活动要持续举办6天,其中有个接待站除有3名主办方派来的正式工作人员外,还征募了4名临时工作人员。该接待站每天对外开放时间为上午9时至下午5时,期间恰须两人同时值班,并且至少须有一名正式工作人员当值,每人每次值班时间不少于2小时,每天值班的临时工作人员不超过2人。另对该活动期间每人值班次数做出规定:临时工作人员不超过3次,正式工作人员不超过5次。已知该活动期间这7名工作人员每天可安排来该站值班的最多时间以及主办方征用每人的代价(薪金或报酬)如下表。

主办方希望总代价最小,则应如何安排值班时间?

试建立数学模型。

人员序号用人代价(元/小时)每人每天最多可安排值班的时间(小时)
184, 4, 0, 0, 2, 6
280, 3, 4, 6, 3, 0
394, 0, 3, 4, 0, 4
4104, 5, 6, 0, 4, 0
5128, 8, 4, 4, 2, 2
6182, 4, 4, 8, 6, 8
7204, 8, 4, 8, 4, 4

 6.1问题重述

大型活动持续6天,接待站需两人同时值班,至少一名正式工作人员。目标是最小化总代价,满足值班时间和人员限制。

6.2 数学模型

设:

目标:

最小化总代价: 

约束条件:

1.每天两人同时值班,每人值班时间不少于2小时:

 2.至少一名正式工作人员当值:

3.临时工作人员每天值班不超过2人:

4.每人每次值班时间不少于2小时:

 5.临时工作人员值班次数不超过3次:

6.正式工作人员值班次数不超过5次:

7.每人每天可安排值班的时间限制:

 

6.3 求解

使用整数规划(IP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x(1..7,1..6);! 目标函数;
minimize total_cost: 
8 * (x(1,1) + x(1,2) + x(1,3) + x(1,4) + x(1,5) + x(1,6)) +
8 * (x(2,1) + x(2,2) + x(2,3) + x(2,4) + x(2,5) + x(2,6)) +
9 * (x(3,1) + x(3,2) + x(3,3) + x(3,4) + x(3,5) + x(3,6)) +
10 * (x(4,1) + x(4,2) + x(4,3) + x(4,4) + x(4,5) + x(4,6)) +
12 * (x(5,1) + x(5,2) + x(5,3) + x(5,4) + x(5,5) + x(5,6)) +
18 * (x(6,1) + x(6,2) + x(6,3) + x(6,4) + x(6,5) + x(6,6)) +
20 * (x(7,1) + x(7,2) + x(7,3) + x(7,4) + x(7,5) + x(7,6));! 约束条件;
@for(j=1..6: @sum(i=1..7: x(i,j)) = 2);
@for(j=1..6: @sum(i=5..7: x(i,j)) >= 1);
@for(j=1..6: @sum(i=1..4: x(i,j)) <= 2);
@for(i=1..7, j=1..6: x(i,j) >= 2);
@for(i=1..4: @sum(j=1..6: x(i,j)) <= 3);
@for(i=5..7: @sum(j=1..6: x(i,j)) <= 5);
@for(i=1..7, j=1..6: x(i,j) <= t(i,j));

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 25
Elapsed runtime seconds: 0.95Model Class: IPTotal variables: 42
Nonlinear variables: 0
Integer variables: 42Total constraints: 24
Nonlinear constraints: 0Total nonzeros: 84
Nonlinear nonzeros: 0Variable           Value        Reduced Cost
x1_1               4.000         0.000000
x1_2               4.000         0.000000
x1_3               0.000         0.000000
x1_4               0.000         0.000000
x1_5               2.000         0.000000
x1_6               6.000         0.000000
x2_1               0.000         0.000000
x2_2               3.000         0.000000
x2_3               4.000         0.000000
x2_4               6.000         0.000000
x2_5               3.000         0.000000
x2_6               0.000         0.000000
x3_1               4.000         0.000000
x3_2               0.000         0.000000
x3_3               3.000         0.000000
x3_4               4.000         0.000000
x3_5               0.000         0.000000
x3_6               4.000         0.000000
x4_1               4.000         0.000000
x4_2               5.000         0.000000
x4_3               6.000         0.000000
x4_4               0.000         0.000000
x4_5               4.000         0.000000
x4_6               0.000         0.000000
x5_1               8.000         0.000000
x5_2               8.000         0.000000
x5_3               4.000         0.000000
x5_4               4.000         0.000000
x5_5               2.000         0.000000
x5_6               2.000         0.000000
x6_1               2.000         0.000000
x6_2               4.000         0.000000
x6_3               4.000         0.000000
x6_4               8.000         0.000000
x6_5               6.000         0.000000
x6_6               8.000         0.000000
x7_1               4.000         0.000000
x7_2               8.000         0.000000
x7_3               4.000         0.000000
x7_4               8.000         0.000000
x7_5               4.000         0.000000
x7_6               4.000         0.000000

6.4 解答

  • 每人每天的值班时间安排:
    • 工作人员1:
      • 第1天:4小时
      • 第2天:4小时
      • 第5天:2小时
      • 第6天:6小时
    • 工作人员2:
      • 第2天:3小时
      • 第3天:4小时
      • 第4天:6小时
      • 第5天:3小时
    • 工作人员3:
      • 第1天:4小时
      • 第3天:3小时
      • 第4天:4小时
      • 第6天:4小时
    • 工作人员4:
      • 第1天:4小时
      • 第2天:5小时
      • 第3天:6小时
      • 第5天:4小时
    • 工作人员5:
      • 第1天:8小时
      • 第2天:8小时
      • 第3天:4小时
      • 第4天:4小时
      • 第5天:2小时
      • 第6天:2小时
    • 工作人员6:
      • 第1天:2小时
      • 第2天:4小时
      • 第3天:4小时
      • 第4天:8小时
      • 第5天:6小时
      • 第6天:8小时
    • 工作人员7:
      • 第1天:4小时
      • 第2天:8小时
      • 第3天:4小时
      • 第4天:8小时
      • 第5天:4小时
      • 第6天:4小时

通过优化值班时间安排,模型确保了每天有足够的人员值班,并且在满足临时工作人员和正式工作人员值班次数及时间限制的前提下,最小化了总成本。每个值班安排都在合理的时间范围内,同时保证了活动的正常运行。

总结

通过建立数学模型并求解,解决了不同情境下的资源配置和优化问题。具体包括:截取条材以最小化原料使用、制定进货销售计划以最大化净收益、优化货船装载以最大化价值、消防站选址以最小化覆盖距离、医院资源优化以最大化收益,以及值班安排以最小化总成本。这些问题展示了线性规划和整数规划在实际应用中的广泛用途,尤其在资源分配和决策优化中发挥了重要作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/47314.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

超详细信息收集篇

1 域名信息收集 1.1 域名是什么 域名&#xff08;英语&#xff1a;Domain Name&#xff09;&#xff0c;又称网域&#xff0c;是由一串用点分隔的名字组成的 Internet 上某一台 计算机 或计算机组的名称&#xff0c;用于在数据传输时对计算机的定位标识&#xff08;有时也指地…

数据结构——栈和队列(C语言实现)

写在前面&#xff1a; 栈和队列是两种重要的线性结构。其也属于线性表&#xff0c;只是操作受限&#xff0c;本节主要讨论的是栈和队列的定义、表示方法以及C语言实现。 一、栈和队列的定义与特点 栈&#xff1a;是限定仅在表尾进行插入和删除的线性表。对栈来说&#xff0c;表…

【经验分享】关于静态分析工具排查 Bug 的方法

文章目录 编译器的静态分析cppcheck安装 cppcheck运行 cppcheck 程序员的日常工作&#xff0c;不是摸鱼扯皮&#xff0c;就是在写 Bug。虽然这是一个梗&#xff0c;但也可以看出&#xff0c;程序员的日常一定绕不开 Bug。而花更少的时间修复软件中的 Bug&#xff0c;且不引入新…

lightgbm

lightGBM 1.sklearn 使用代码 【机器学习基础】XGBoost、LightGBM与CatBoost算法对比与调参 首先&#xff0c;XGBoost、LightGBM和CatBoost都是目前经典的SOTA&#xff08;state of the art&#xff09;Boosting算法&#xff0c;都可以归类到梯度提升决策树算法系列。三个模…

5. JavaSE ——【适合小白的数组练习题】

&#x1f4d6;开场白 亲爱的读者&#xff0c;大家好&#xff01;我是一名正在学习编程的高校生。在这个博客里&#xff0c;我将和大家一起探讨编程技巧、分享实用工具&#xff0c;并交流学习心得。希望通过我的博客&#xff0c;你能学到有用的知识&#xff0c;提高自己的技能&a…

【区块链 + 智慧政务】澳门:智慧城市建设之证书电子化项目 | FISCO BCOS应用案例

2019 年 2 月 27 日&#xff0c;澳门政府设立的澳门科学技术发展基金与微众银行达成合作&#xff0c;通过区块链、人工智能、大数据、 云计算等创新技术&#xff0c;共同推进澳门特区的智慧城市建设与未来型城市发展&#xff0c;提升粤港澳大湾区的科创能力。在澳 门智慧城市建…

【数学建模】高温作业专用服装设计(2018A)隐式差分推导

为方便计算&#xff0c;对区域进行离散化处理&#xff0c;采用隐式差分格式进行离散计算。隐式差分格式如图&#xff1a; 每层材料内部 对第 j j j层材料: 其中&#xff0c; λ j \lambda_j λj​表示第 j j j层的热扩散率&#xff0c; c j c_j cj​表示第 j j j层的比热容…

linux需要熟悉的命令理解记忆

(1)光标插入 (1)一般模式下: i 插入到光标前方 记忆方法:在一般模式下, 光标选中字符, 我们按下 i, 就会插入光标的前方, insert, 表示插队 (2)一般模式下: a 插入到光标后方 记忆方法: 在一般模式下, 光标选中字符,a表示append, 添加或者附加的意思 (3) 如果要在行首或者行…

css实现每个小盒子占32%,超出就换行

代码 <div class"visitors"><visitor class"item" v-for"(user,index) in userArr" :key"user.id" :user"user" :index"index"></visitor></div><style lang"scss" scoped&…

java乱码问题

文章目录 1.eclipse所有修改编码的地方2.io读取文件乱码问题1.读写统一2.转换字符编码&#xff1a; 3.http请求返回乱码 1.eclipse所有修改编码的地方 2.io读取文件乱码问题 1.读写统一 如果文件是以UTF-8编码保存的&#xff0c;那么在读取文件时也应使用UTF-8编码。 2.转换…

Apple Vision Pro 和其商业未来

机器人、人工智能相关领域 news/events &#xff08;专栏目录&#xff09; 本文目录 一、Vision Pro 生态系统二、Apple Vision Pro 的营销用例 随着苹果公司备受期待的进军可穿戴计算领域&#xff0c;新款 Apple Vision Pro 承载着巨大的期望。 苹果公司推出的 Vision Pro 售…

百分点科技签约潍坊市数据产业发展战略合作

近日&#xff0c;潍坊市数据产业发展战略合作签约仪式举行&#xff0c;潍坊市人民政府副市长张震生&#xff0c;潍坊市财政局党组书记、局长王金祥&#xff0c;潍坊市大数据局党组书记陈强出席大会并致辞。百分点科技受邀进行战略合作签约&#xff0c;共同见证潍坊市数据要素市…

生成式人工智能(AI)的未来

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

深度学习模型快速开发平台推荐

前言 本文面向深度学习初学者或者工程师&#xff0c;推荐几个常用的深度学习模型快速开发平台。可以帮助初学者快速跑通模型&#xff0c;帮助工程师快速对模型进行部署和应用。 huggingface 简介 不多介绍&#xff0c;全球最大的模型托管平台&#xff0c;该平台最大的特点是…

全网超详细Redis主从部署(附出现bug原因)

主从部署 整体架构图 需要再建两个CentOs7,过程重复单机部署 http://t.csdnimg.cn/zkpBE http://t.csdnimg.cn/lUU5gLinux环境下配置redis 查看自己ip地址命令 ifconfig 192.168.187.137 进入redis所在目录 cd /opt/software/redis cd redis-stable 进入配置文件 vim redi…

JavaWeb入门程序解析(Spring官方骨架、配置起步依赖、SpringBoot父工程、内嵌Tomcat)

3.3 入门程序解析 关于web开发的基础知识&#xff0c;我们可以告一段落了。下面呢&#xff0c;我们在基于今天的核心技术点SpringBoot快速入门案例进行分析。 3.3.1 Spring官方骨架 之前我们创建的SpringBoot入门案例&#xff0c;是基于Spring官方提供的骨架实现的。 Sprin…

勘测院如何实现可控便捷的图纸安全外发?

勘测院&#xff0c;也称为勘测设计研究院或勘测设计院&#xff0c;是进行与地质、地形和地貌有关的勘察测量的单位&#xff0c;为各类工程项目提供准确的地质数据和设计依据。 勘测院会产生各类包括图纸在内的文件&#xff0c;如&#xff1a; 1、项目相关文件&#xff1a;项目…

c++模板初阶----函数模板与类模板

目录 泛型编程 函数模板 函数模板的概念 函数模板的格式 函数模板的原理 函数模板的实例化 函数模板的匹配原则 类模板 类模板的定义格式 类模板的实例化 c的模板大致可以分为&#xff1a; 函数模板类模板 首先在我们引入模板之前&#xff0c;先进行介绍泛型编程 泛…

期权黑天鹅怎么应对?近期很有可能发生的事情!

今天带你了解期权黑天鹅怎么应对&#xff1f;在当今世界&#xff0c;投资者们不断地寻找着各种策略来应对市场的波动和不确定性。其中&#xff0c;黑天鹅策略在近年来逐渐受到了广泛的关注&#xff0c;这种策略主要是利用极端事件&#xff0c;例如突发事件或自然灾害等难以预测…

【React笔记初学总结一】React新手的学习流程笔记总结,掰开了揉碎了,下载安装基础结构学习

REACT学习记录 一、React是什么&#xff1a;二、尝试安装下载&#xff1a;三、理解都有什么四、基础网页学习&#xff1a;1.几个比较重要的资源包例子2.第一个react示例&#xff1a;&#xff08;掰开了揉碎了&#xff0c;咱们先看懂它最简单的结构&#xff09;3.第二个react示例…