蔚来汽车:拥抱TiDB,实现数据库性能与稳定性的飞跃

作者: Billdi表弟 原文来源: https://tidb.net/blog/449c3f5b

演讲嘉宾:吴记 蔚来汽车Tidb爱好者

整理编辑:黄漫绅(表妹)、李仲舒、吴记

本文来自 TiDB 社区合肥站走进蔚来汽车——来自吴记老师的演讲《TiDB 在新能源车企的实践:MySQL 到 TiDB 的迁移思考》。这次分享将深入探讨新能源车企从 MySQL 迁移到 TiDB 的过程与实践。我们将分享迁移过程中的挑战和动机,面对单表数量增长至 20 亿带来的应对策略,并详细介绍 TiDB 如何优化多表 Join 场景下的查询效率。此外,也将分享使用 TiDB 过程中常见的问题与解决方法,帮助大家更有效地应用 TiDB 解决企业数据库管理中的挑战。

活动回顾及 PPT 下载: https://asktug.com/t/topic/1020557

演讲视频实录: https://www.bilibili.com/video/BV1LC4y1C7Yq

企业介绍

蔚来是一家全球化的智能电动汽车公司,致力于通过提供高性能的智能电动汽车与极致用户体验。2023 年第三季度中国汽车市场销量 566.8 万辆,同比增长 2.4%,其中新能源车型销量合计接近 200 万辆,同比增长 36%。其中,蔚来在中国 30 万元以上的纯电汽车市场中位列第一,市场份额占比 45%。

业务挑战

随着业务的快速扩张,蔚来公司内部某些业务的数据量急剧增加,部分业务的日增数据量达到千万级别。在MySQL数据库中,一些表的记录数已超过 20 亿条。在多种业务场景中,需要对这些大型表与其他表进行联接查询,这导致了严重的性能瓶颈,查询效率低下,甚至在某些情况下查询经常超时。由于查询需求的多样性,传统的基于 hash 的分表策略已无法满足业务需求。

我们目前面临的数据库挑战主要包括:

  1. 性能问题 :在执行包含 20 亿记录的大表与不同规模的其他表(百万、几十万、几万)的联接查询时,性能显著下降,特别是对于聚合函数如 count 的查询几乎不可行。
  2. 时间维度跨度大 :大多查询场景需要结合时间维度进行时间范围查询,通常要查询中过滤最近半年的数据,但是仍然有对历史数据查询的可能。
  3. 表结构复杂性 :大型表初始包含 20 多亿条记录,拥有 30 多个字段,其中约 10 个字段需要与其他三个表进行联接查询。
  4. 写入与同步延迟 :部分数据库表的单表写入数据量巨大,导致主从复制(master-slave replication)出现延迟,影响多个业务流程。
  5. DDL执行缓慢 :在MySQL中,由于单表数据量过大,执行数据定义语言(DDL)操作变得非常缓慢,有时需要数小时才能完成。

为了解决这些问题,我们可能需要考虑以下策略:

  • 优化查询 :重写查询逻辑,减少不必要的联接和数据扫描。
  • 索引优化 :为常用于联接和查询的字段创建索引,提高查询效率。
  • 分区表 :根据业务逻辑对表进行分区,以提高查询和维护的性能。
  • 读写分离 :通过读写分离来减轻主数据库的压力,提高查询响应速度。
  • 分布式数据库 :考虑使用分布式数据库解决方案,以支持水平扩展和负载均衡。
  • 异步处理 :对于不需要即时返回结果的查询,采用异步处理方式。

为什么选择 TiDB?

通过调研,蔚来数据应用团队将目光放到了分布式数据库上,TiDB 作为一款流行度很广的开源分布式 HTAP 数据库,开始进入团队调研和应用的视野。

在调研中,蔚来数据应用团队认为 TiDB 作为一款开源 分布式关系型数据库 在线事务处理 ,在线分析处理 融合型分布式数据库产品,具备 水平弹性扩容或者缩容 金融级高可用 实时 HTAP 、云原生的分布式数据库、 兼容 MySQL 5.7 /MySQL 8.0 协议和 MySQL 生态 等重要特性。目标是为用户提供一站式 OLTP (Online Transactional Processing)、OLAP (Online Analytical Processing)、HTAP 解决方案。TiDB 适合高可用、强一致要求较高、数据规模较大等各种应用场景。

TiDB的多项优势特性有效满足了蔚来数据应用团队在处理大规模数据和高并发事务时的需求:

  1. 分布式架构 :TiDB 采用分布式关系型数据库架构,有效突破了单机处理能力的局限,提升了整体性能,扩展性。

  2. 高可用性: TiDB 通过使用 Raft 一致性算法,数据在各 TiKV 节点间复制为多副本,以确保某个节点宕机时数据的安全性,同时具备同城双中心、两地三中心的金融级高可用方案。

  3. 水平弹性扩展 :TiDB 不仅支持传统关系型数据库的事务和分析功能,还具备非关系型数据库的水平扩展能力和灵活性,提供了高性能的数据存储解决方案。

  4. 分布式强一致性事务处理 :TiDB 支持 ACID(原子性、一致性、隔离性、持久性)事务,确保在分布式环境下的数据一致性和完整性。

  5. MySQL 协议高度兼容性 :TiDB 与 MySQL 协议高度兼容,支持广泛的 MySQL SQL 语法以及 MySQL 生态系统工具,降低了从 MySQL 迁移到 TiDB 的学习成本和技术障碍,实现了平滑过渡。

  6. 灵活的分区功能 :TiDB 提供了灵活的分区机制,支持 hash、range、list、key 等分区,简化了数据管理和维护工作,使得业务逻辑与数据分片解耦,提高了查询效率。

  7. 强大的数据同步工具

    1. DM可以方便的实现数据从mysql(全量+增量)同步到TIDB
    2. TiCDC 工具支持基于 Binlog 的数据同步,允许 TiDB 与 MySQL或者TIDB 之间实现主从复制,确保数据的实时同步和一致性。
  8. 丰富的生态系统 :TiDB 拥有一个成熟的生态系统,包括 TiFlash 提供的列式存储引擎,优化了分析型查询的性能;TiSpark 允许 TiDB 作为存储层,结合 Spark 的强大计算能力,提供了灵活的大数据处理能力。

通过这些特性,TiDB 不仅为蔚来提供了一个高性能、高可用的数据库解决方案,还通过其强大的生态系统,支持蔚来在数据管理和分析方面的需求,推动了业务的持续创新和发展。

架构对比

蔚来数据应用团队从架构、存储层面对比了 TiDB 与 MySQL 的区别与优势:

TiDB 架构详细描述

TiDB Server 层:

  • SQL解析与优化 :TiDB Server负责接收客户端的SQL请求,进行语法解析和逻辑优化,生成执行计划。这一步骤是查询优化的关键,TiDB Server会利用其优化器来决定最有效的查询执行路径。
  • 分布式协调器PD(Placement Driver) :PD是TiDB的元数据管理组件,负责存储集群的元信息,包括数据分布和节点状态。它与TiDB Server交互,协调数据的分布和负载均衡。
  • 分布式存储TiKV :TiKV是一个分布式的键值存储系统,负责存储实际的数据。TiDB Server通过PD与TiKV进行交互,获取或写入数据。
  • 执行器 :在获取到数据后,TiDB Server的执行器负责进行数据的进一步处理,包括合并、排序、分页和聚合等操作。

特点

  • 水平扩展 :TiDB Server可以轻松地通过增加节点来扩展系统的处理能力。
  • 高可用性 :TiDB Server设计为无状态,可以快速故障转移,保证服务的连续性。
  • 强一致性 :通过分布式事务和MVCC机制,TiDB保证了事务的ACID属性。

MySQL架构详细描述

传统单体架构:

  • 集中式处理 :MySQL的所有数据库操作,包括SQL解析、查询优化、数据存储和检索,都在同一服务器上完成。
  • 单一数据存储 :数据存储在本地磁盘或连接的存储系统中,没有分布式存储的概念。
  • 垂直扩展依赖 :由于是单体架构,MySQL通常通过增加单个服务器的硬件能力(如CPU、内存、存储)来提升性能,这称为垂直扩展。

特点

  • 简化管理 :由于所有组件都在一个服务器上,管理和维护相对简单。
  • 扩展性限制 :垂直扩展有其物理限制,当达到硬件极限时,性能提升会遇到瓶颈。
  • 事务和并发处理 :MySQL通过行锁和表锁等机制来处理并发和事务,但在高并发场景下可能会遇到性能瓶颈。

结构对比总结

  • 扩展性 :TiDB的分布式架构允许其水平扩展,而MySQL主要依赖垂直扩展。
  • 容错能力 :TiDB通过多节点和副本机制提供高可用性,MySQL则依赖于主从复制和故障转移机制。
  • 性能 :TiDB通过分布式计算和存储优化了大规模数据集的性能,MySQL在大规模数据集下可能会遇到性能瓶颈。
  • 复杂性与灵活性 :TiDB的架构较为复杂,但提供了更高的灵活性和扩展性;MySQL架构简单,但在处理大规模和高并发场景时可能需要额外的优化措施。

MySQL 架构图

TiDB 架构图

存储层

MySQL存储架构

InnoDB存储引擎:

  • MySQL的默认存储引擎是InnoDB,它是一个健壮的事务型存储引擎,支持ACID事务。
  • 所有数据都存储在表空间中,表空间可以包含多个数据文件和日志文件。
  • 表数据以B+树的索引结构存储,这为快速的数据访问提供了基础。

B+树索引结构:

  • 主键索引和非主键索引都是B+树结构,其中非主键索引的叶子节点存储主键值,用于快速定位到具体的数据行。
  • B+树的每个节点可以存储更多的键值,这意味着相比B树,B+树的高度更低,查询效率更高。

事务和MVCC:

  • InnoDB通过行级锁定和MVCC机制来支持高并发的读写操作。
  • 通过Undo日志来实现MVCC,允许在不锁定资源的情况下读取历史数据版本。

TiDB存储层

TiKV分布式键值存储:

  • TiKV是TiDB的分布式存储层,它使用RocksDB作为其本地存储引擎,优化了写入性能和磁盘空间使用。
  • TiKV将数据分散存储在多个节点上,通过Raft协议保证数据的强一致性和高可用性。

MVCC版本控制:

  • TiKV使用MVCC机制来处理并发控制和历史数据版本,每个事务都会获取一个全局唯一的时间戳(TS)作为版本号。
  • 通过这种方式,TiKV可以支持同一时间点的多个事务读取到一致的数据快照。

数据存储格式:

  • 主键数据存储格式为 tablePrefix{tableID}_recordPrefixSep{Col1} ,其中 Value 包含了行数据的所有列值。
  • 唯一索引的存储格式为 tablePrefix{tableID}_indexPrefixSep{indexID}_indexedColumnsValue Value 为对应的行ID。
  • 非唯一索引的存储格式与唯一索引类似,但每个索引值后附加行ID, Value 可能为 null

特点:

  • TiKV的存储层设计为易于扩展,可以水平扩展以适应不断增长的数据量。
  • 通过Raft协议,TiKV能够在多个副本之间同步数据,提高了数据的可用性和容错能力。

存储层对比总结

  • 扩展性 :TiDB的TiKV存储层设计为分布式,易于水平扩展,而MySQL的InnoDB存储引擎通常需要垂直扩展。
  • 并发控制 :TiDB使用MVCC和TSO(Timestamp Ordering)来实现并发控制,而MySQL使用行级锁定和MVCC。
  • 数据一致性 :TiKV通过Raft协议保证跨多个节点的数据一致性,InnoDB则依赖于单个服务器的事务日志和恢复机制。
  • 存储效率 :TiKV的RocksDB存储引擎优化了写入性能和压缩,而InnoDB的B+树结构优化了读取性能。

MySQL 存储架构

TiDB 存储层架构

TiDB索引实现

KV存储模型:

  • TiDB的索引基于键值(Key-Value)存储模型实现。这种模型非常适合分布式环境,因为它允许数据的水平分割和分布式存储。

主键索引:

  • 主键索引使用行的主键值作为键,行数据的序列化形式作为值。例如,如果 Col1 是主键,则键可能表示为 tablePrefix{tableID}_recordPrefixSep{Col1}
  • 这种映射允许TiDB通过主键值直接访问对应的行数据,提供了高效的数据检索。

唯一索引:

  • 唯一索引使用索引列的值作为键,行的主键值作为值。例如,键可能表示为 tablePrefix{tableID}_indexPrefixSep{indexID}_indexedColumnsValue ,值是对应的 RowID
  • 这种设计确保了索引的唯一性,并且可以通过索引值快速定位到具体的数据行。

非唯一索引:

  • 非唯一索引与唯一索引类似,但允许同一个键对应多个值。在这种情况下,键仍然是索引列的值,但值是包含 RowID 的列表。
  • 这允许TiDB处理具有相同索引值的多行数据。

特点:

  • TiDB的索引实现简化了分布式环境下的数据访问,通过键值对直接映射,提高了查询效率。
  • 由于TiDB的存储层TiKV使用RocksDB,索引数据也被优化存储,以减少磁盘空间的使用。

MySQL索引实现

B+树结构:

  • MySQL的索引基于B+树结构,这是一种自平衡树,优化了读写性能和空间使用。
  • B+树的所有数据都存储在叶子节点,内部节点仅存储键值和指向子节点的指针,这减少了查找过程中的磁盘I/O操作。

主键索引:

  • 主键索引是聚簇索引,非主键索引是二级索引。聚簇索引的叶子节点直接包含行数据,而非主键索引的叶子节点包含主键值,用于快速跳转到聚簇索引。

非主键索引:

  • 非主键索引的叶子节点不直接存储行数据,而是存储对应的主键值。查询时,需要通过主键值回表查询,访问聚簇索引以获取完整的行数据。

特点:

  • B+树结构减少了查询过程中的I/O操作次数,提高了数据访问速度。
  • 聚簇索引和非聚簇索引的设计,优化了数据的物理存储,减少了冗余和空间使用。

索引实现对比总结

  • 数据访问方式 :TiDB通过键值对直接映射数据,而MySQL通过B+树结构进行索引。
  • 分布式适应性 :TiDB的索引实现更适合分布式环境,易于水平扩展。MySQL的B+树索引则优化了单个服务器上的数据访问。
  • 查询效率 :TiDB的索引实现允许快速的数据检索,特别是在分布式查询中。MySQL的B+树索引通过减少I/O操作提高了查询效率。
  • 存储优化 :TiDB的RocksDB存储引擎优化了索引数据的存储,而MySQL的B+树结构减少了索引的存储空间需求。

MySQL 索引 b+tree

TiDB 中 Rocksdb 分布式 leveldb lsm

TiDB事务处理和MVCC

TiDB事务模型:

  • TiDB支持两种类型的锁:乐观锁和悲观锁,以适应不同的业务场景。
  • 乐观锁 :适用于写冲突较少的环境,通过检测在事务开始后数据是否被其他事务修改来避免锁的争用。如果检测到冲突,事务会进行重试。
  • 悲观锁 :适用于高冲突环境,通过在事务开始时就锁定涉及的数据行,防止其他事务修改这些数据。

MVCC实现:

  • TiDB采用MVCC机制来提供在不锁定资源的情况下读取历史数据版本的能力,从而提高并发性能。
  • MVCC通过为每个事务分配一个全局唯一的时间戳(TS),并使用这个时间戳来确定数据的可见性。
  • 在TiDB中,每个数据行都保存了多个版本,每个版本都有一个开始和结束的时间戳。查询操作会根据当前事务的时间戳来确定应该读取哪个版本的数据。

MySQL事务处理和MVCC

InnoDB事务模型:

  • MySQL的InnoDB存储引擎支持ACID(原子性、一致性、隔离性、持久性)事务。
  • InnoDB使用行级锁定机制来处理并发写入,确保事务的隔离性。

MVCC实现:

  • InnoDB通过Undo Log来实现MVCC,允许在不锁定资源的情况下读取历史数据版本。
  • Undo Log记录了数据在事务开始前的状态,这样即使在其他事务修改了数据之后,当前事务仍然可以读取到事务开始前的数据状态。
  • InnoDB的MVCC主要通过Read View来实现,Read View是一个快照,包含了在事务开始时所有已提交的数据的可见性信息。

锁机制:

  • InnoDB主要使用悲观锁,通过行锁和表锁来处理数据的并发访问,防止数据的不一致性。
  • 行锁在SELECT ... FOR UPDATE或INSERT/UPDATE/DELETE操作时自动加锁,以保证事务的原子性和隔离性。
  • 表锁在某些特定的操作,如全表扫描或某些类型的索引操作中使用。

事务与MVCC对比总结

  • 锁机制 :TiDB支持乐观锁和悲观锁,提供了更灵活的锁策略,而MySQL主要使用悲观锁。
  • MVCC实现 :TiDB使用时间戳和版本控制来实现MVCC,而InnoDB使用Undo Log和Read View。
  • 并发性能 :TiDB的MVCC机制通过减少锁的争用来提高并发性能,特别是在高并发读写的场景下。InnoDB的MVCC通过Undo Log减少锁的使用,但在高冲突环境下可能仍然会遇到锁争用。
  • 历史数据访问 :TiDB和InnoDB都允许在不锁定资源的情况下访问历史数据版本,提高了系统的并发读取能力。

通过这种详细的事务和MVCC机制对比,我们可以更深入地理解TiDB和MySQL在事务处理和并发控制方面的差异,以及它们如何适应不同的业务场景和性能需求。

TiDB 同时支持了乐观锁和悲观锁模式

MySQL 通过undolog实现( Redo Log、Undo Log、Bin Log )

TiDB MVCC 的实现

SQL生命周期

  • TiDB SQL执行 :分布式环境中,SQL执行涉及多个组件和步骤,包括索引使用、存储引擎选择等。
  • 性能分析工具 :使用 EXPLAIN EXPLAIN ANALYZE 分析SQL执行计划和实际执行情况。

由于是分布式数据库,在 TiDB 中 SQL 的执行和 MySQL 有很大区别,如索引实现、存储机制等。

  1. 在 TiDB 中查询一条 SQL 是如何执行的,使用的引擎,索引等信息操作如下:
explain yoursql; 
explain analyze yoursql; //真实执行
  1. SQL 语法的兼容性

TiDB 语法兼容了 MySQL 8.0 的绝大部分语法,目前仅发现新版的 MySQL 一些特殊语法不支持,比如default CURRENT_DATE;同时新增了一些语法,比如主键索引 auto_random 的类型,基本上业务上一般已经用的 MySQL 的 SQL 基本都支持。

分区的使用

  • TiDB分区 :支持多种分区类型,如Range、List和Hash分区,简化数据管理并提高查询效率。
  • 分区表分析 :自动分析分区数据分布,优化查询计划。

TiDB 当前支持的类型包括 Range 分区 、 Range COLUMNS 分区 、 Range INTERVAL 分区 、 List 分区 、 List COLUMNS 分区 和 Hash 分区

  1. 查看分区的数据
/*查看分区的数据分布*/SHOW STATS_META where table_name =  "table_demo";
/*从分区直接查询数据*/CREATE TABLE table_demo (`id` bigint(20) primary key auto_random,start_time timestamp(3)
) PARTITION BY RANGE (FLOOR(UNIX_TIMESTAMP(`start_time`)))SELECT * FROM table_demo PARTITION (p1) where xxx;
/* 新增分区 */
ALTER TABLE  table_demo ADD PARTITION(PATITION p2 VALUES LESS THAN ( FLOOR(UNIX_TIMESTAMP(`start_time`))/* 删除分区 */
ALTER TABLE table_demo drop partition p1
  1. 分区表的说明:

TiDB 每个分区都是单独的一张表,会对每个分区进行统计,如查询的时候进行逻辑优化,推算数据在哪些分区里面;TiFlash 也支持分区。

  1. 分区表的分析

TiDB 分区表分析有利于统计索引(分区)的分布情况

show variables like '%tidb_auto_analyze_end_time%';
set global tidb_auto_analyze_end_time = "06:00 +0000"; 
analysis table table_name; //分析表,有利于执行计划

列式存储 TiFlash

TiDB 提供了列式存储引擎 TiFlash,它是 TiKV 的列存扩展,在提供了良好的隔离性的同时,也兼顾了强一致性。

只需在 TiDB 做出一些设置,数据就可以从 TiKV->TiFlash 同步过去。

//增加tiflash副本
ALTER TABLE table_name SET TIFLASH REPLICA count;//查看数据同步进度
SELECT * FROM information_schema.tiflash_replica WHERE TABLE_SCHEMA = '<db_name>' and TABLE_NAME = '<table_name>';

TiDB 可以根据表分析的情况综合索引信息和数据量,自动选择使用 TiFlash 或者 TiKV,也可以在 SQL 内指定使用的存储引擎,且支持多表。

select /*+ read_from_storage(tiflash[table_name]) */ ... from table_name;

解决方案

原始的 MySQL 数据库中都是用户业务数据,蔚来数据团队为了稳妥采取了先将数据写入到 MySQL,再通过 DM ( TiDB Data Migration )将数据同步到 TiDB 中,内部各大系统直接使用 TiDB 进行查询,大幅优化了查询性能。

同步之后,蔚来数据团队用 20 亿单表业务数据作验证,分别在 MySQL 和 TiDB 运行,进行性能对比:

Join 性能 查询耗时稳定性 Count 性能 体验
MySQL 查询的性能比较稳定快,平均 5s,但是30% 查询条件下超时,业务无法接受 join 查询比较稳定 几乎无法 count 分页功能无法使用,只能下一页
TiDB 部分条件快,部分条件慢,大部分条件下在 2-3s 左右,95% 的查询 2s 内出结果 稳定 count 比较快 3s 左右 可以分页,分页数几十万可能sql内存超限制

在此基础上,蔚来数据应用团队又对 TiDB 性能又做出进一步优化,如使用分区表,缩小减少潜在的查询范围,使用 TiFlash 列存,进一步优化查询效率等。

经过优化,TiDB 的 Join 查询业务上 80% 查询达到 2s 内,20% 查询在 5s 内。Count 结果很快,用户体验非常好。

总结

目前,TiDB 已经在蔚来内部得到了大范围推广,有多个业务开始使用 TiDB。业务方反馈 TiDB 真正解决了业务中的很多问题,并且在使用中表现非常平稳,稳定性超乎预料,大大增强了使用国产分布式数据库的信心。

活动回顾

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/46274.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java数组之——了解十大排序算法(动画版)

详细的冒泡排序和快速排序请查看文章&#xff1a;java数组之冒泡排序、快速排序-CSDN博客https://blog.csdn.net/weixin_44554794/article/details/140361078 一、插入排序 二、希尔排序 三、选择排序 四、堆排序 五、冒泡排序 六、快速排序 七、归并排序 八、计数排序 九、桶…

【2024_CUMCM】时间序列1

目录 概念 时间序列数据 时期和时点时间序列 数值变换规律 长期趋势T 季节趋势S 循环变动C 不规则变动I 叠加和乘积模型 叠加模型 相互独立 乘积模型 相互影响 注 spss缺失值填补 简单填补 五种填补方法 填补原则 1.随机缺失 2.完全随机缺失 3.非随机缺失…

半小时获得一张ESG入门证书【详细中英文笔记一】

前些日子&#xff0c;有朋友转发了一则小红书的笔记给我&#xff0c; 标题是《半小时获CFI官方高颜值免费证书 ESG认证》。这对考证狂魔的我来说&#xff0c;必然不能错过啊&#xff0c;有免费的羊毛不薅白不薅。 ESG课程的 CFI 官方网址戳这里&#xff1a;CFI 于是信心满满的…

「iOS」暑假第一周 —— ZARA的仿写

暑假第一周 ZARA的仿写 文章目录 暑假第一周 ZARA的仿写写在前面viewDidLoad 之中的优先级添加自定义字体下载想要的字体添加至info之中找到字体名字并应用 添加应用图标和启动页面 写在前面 暑假第一周留校学习&#xff0c;对于ZARA进行了仿写&#xff0c;在仿写的过程之中&a…

护网HW面试常问——webshell内存马流量特征以及查杀

参考&#xff1a;学习干货|HVV必学远控工具及Webshell流量合集分析(建议收藏附面试题) 蚁剑 ini_set ini_set_time ini_set_limit ini_set("display_errors","0") 部分代码明文传输&#xff0c;较好辨认 哥斯拉 1、User-Agent (弱特征) 在默认的情况…

【坑】微信小程序开发wx.uploadFile和wx.request的返回值格式不同

微信小程序 使用wx.request&#xff0c;返回值是json&#xff0c;如下 {code:200,msg:"更新用户基本信息成功",data:[]} 因此可以直接使用如 res.data.code获取到返回值中的code字段 但是&#xff0c;上传图片需要使用wx.uploadFile&#xff0c;返回的结果如下 …

Hive表【汇总】

提前必备 1、内部表和外部表的区别 概念讲解&#xff1a; 外部表&#xff1a;1、存放他人给予自己的数据2、当我们删除表操作时&#xff0c;会将表的元数据删除&#xff0c;保留数据文件 内部表&#xff1a;1、存放已有的数据2、当我们删除表操作时&#xff0c;会将表的元数据…

CCNA-2-V7-模块7–9:可用且可靠的网络考试答案

1.一台启用了DHCP的客户端PC刚刚启动。客户端PC在与DHCP服务器通信时,将在哪两个步骤中使用广播消息?(选两个。) DHCPDISCOVERDHCPACKDHCPOFFERDHCPREQUESTDHCPNAK 2.管理员发出命令:管理员想达到什么目的? Router(config)# interface g0/1 Router(config-if)# ip address …

Java中标识符和关键字

1.标识符 public class HelloWorld{public static void main(String[] args){System.out.println("Hello,world");} }上述代码中在public class 后面的HelloWorld称为类名&#xff0c;main称为方法名&#xff0c;也可以将其称为标识符&#xff0c;即&#xff1a;在程…

算法学习day12(动态规划)

一、不同的二叉搜索树 二叉搜索树的性质&#xff1a;父节点比左边的孩子节点都大&#xff1b;比右边的孩子节点都小&#xff1b; 由图片可知&#xff0c;dp[3]是可以由dp[2]和dp[1]得出来的。(二叉搜索树的种类和根节点的val有关) 当val为1时&#xff0c;左边是一定没有节点的…

C语言 ——— 模拟实现strcpy函数

目录 strcpy函数功能介绍 strcpy函数的模拟实现 strcpy函数功能介绍 学习并使用strcpy函数-CSDN博客 strcpy函数的模拟实现 代码演示&#xff1a; #include<stdio.h> #include<assert.h> char* my_strcpy(char* destination, const char* source) {assert(des…

Databricks Layer

前言 Databricks 中的 Bronze-Silver-Gold 层级是数据湖架构中数据组织和处理的一种方法&#xff0c;它允许数据从原始状态逐步转化为对业务决策有用的形式。这种分层方法有助于数据的可管理性、可扩展性和可维护性&#xff0c;同时也支持数据的快速摄取和灵活的分析需求。Dat…

illustrator免费插件功能强大脚本大集合300多款开发必备可收藏无需下载可直接运行ai设计印刷开发都可用

宝贝名称&#xff1a;TB48 ai悟空插件开发神器脚本仓库300多个脚本开发参考 测试版本&#xff1a;AI CC2018-2020-2021-2022-2023-2024 系统支持&#xff1a;windows系统 标签&#xff1a;Ai插件开发图片插画平面设计印刷打印图标矢量 加企鹅群可自动获取。功能不定时更新

传输层重点协议

目录 一、TCP协议 TCP协议段落格式 原理 1、确认应答机制 2、超时重传机制 3、连接管理机制 三次握手 四次挥手 &#xff08;1&#xff09;不能合并为三次挥手的原因 &#xff08;2&#xff09;延时应答机制—实现合并 &#xff08;3&#xff09;TIME_WAIT的作用 &…

【Unity2D 2022:NPC】制作NPC

一、创建NPC角色 1. 创建JambiNPC并同时创建Jambi站立动画 &#xff08;1&#xff09;点击第一张图片&#xff0c;按住shift不松&#xff0c;再选中后两张图片&#xff0c;拖到层级面板中 &#xff08;2&#xff09;将动画资源文件保存到Animation Clips文件夹中 &#xff08;…

电气工程VR虚拟仿真实训平台以趣味化方式增强吸引力

在工业4.0时代和教育信息化的双重推动下&#xff0c;我们致力于推动实训课件的跨界合作与共创。VR实训课件不仅促进了不同领域、不同行业之间的紧密合作&#xff0c;更让学习变得生动直观。我们凭借3D技术生动、直观、形象的特点&#xff0c;开发了大量配套3D教材&#xff0c;让…

TongRDS 2214 docker版指引(by lqw )

文章目录 前言准备工作中心节点服务节点哨兵节点 前言 部署docker版本&#xff0c;建议先参考TongRDS2214手动部署版指引&#xff08;by lqwsy&#xff09; 在本地手动部署了一套适合业务场景的rds 服务后&#xff0c;再通过dockerfile 打镜像。 准备工作 1.准备对应的安装包…

【亚马逊云】将Amazon EC2 日志数据传输到 CloudWatch 中

文章目录 1. 创建 CloudWatchLogs 策略2. 将 CloudWatchLogs 策略附加给IAM实体3. 将 IAM 角色附加到 EC2 实例4. 在 Amazon EC2 实例上安装和配置 CloudWatch Logs5. 在CloudWatch查看EC2日志6. 参考链接 实验目的&#xff1a;在运行的 EC2 Linux 实例上安装和配置 CloudWatch…

【Java--数据结构】栈:不仅仅是数据存储,它是编程的艺术

欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 目录 栈 栈的方法介绍 入栈push 出栈pop和 瞄一眼peek 判空isEmpty和判满isFull 模拟实现栈 push入栈 pop出栈和peek 测试 使用泛型实现栈 测试 使用链表实现栈&#xff08…

怎么减少pdf的MB,怎么减少pdf的大小

在数字化时代&#xff0c;pdf文件因其格式稳定、跨平台兼容性强等特点而广受欢迎。然而&#xff0c;随着内容的丰富&#xff0c;pdf文件的大小也日益增大&#xff0c;给文件传输和存储带来了不少困扰。本文将为你介绍多种减小pdf文件大小的方法&#xff0c;帮助你轻松应对这一问…