怎么给字符串字段加索引?

怎么给字符串字段加索引?

在这里插入图片描述

现在,几乎所有的系统都支持邮箱登录,如何在邮箱这样的字段上建立合理的索引,是我们今天要讨论的问题。

假设,你现在维护一个支持邮箱登录的系统,用户表是这么定义的:

mysql> create table SUser(
ID bigint unsigned primary key,
email varchar(64), 
... 
)engine=innodb; 

由于要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:

mysql> select f1, f2 from SUser where email='xxx';

从第 4 和第 5 篇讲解索引的文章中,我们可以知道,如果 email 这个字段上没有索引,那么这个语句就只能做全表扫描。

同时,MySQL 是支持前缀索引的,也就是说,你可以定义字符串的一部分作为索引。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字符串。

比如,这两个在 email 字段上创建索引的语句:

mysql> alter table SUser add index index1(email);
或
mysql> alter table SUser add index index2(email(6));

第一个语句创建的 index1 索引里面,包含了每个记录的整个字符串;而第二个语句创建的 index2 索引里面,对于每个记录都是只取前 6 个字节。

那么,这两种不同的定义在数据结构和存储上有什么区别呢?如图 2 和 3 所示,就是这两个索引的示意图。

在这里插入图片描述

                                                                   图 1 email 索引结构

在这里插入图片描述

                                                                   图 2 email(6) 索引结构

从图中你可以看到,由于 email(6) 这个索引结构中每个邮箱字段都只取前 6 个字节(即:zhangs),所以占用的空间会更小,这就是使用前缀索引的优势。

但,这同时带来的损失是,可能会增加额外的记录扫描次数。

接下来,我们再看看下面这个语句,在这两个索引定义下分别是怎么执行的。

select id,name,email from SUser where email='zhangssxyz@xxx.com';

果使用的是 index1(即 email 整个字符串的索引结构),执行顺序是这样的:

  1. 从 index1 索引树找到满足索引值是’zhangssxyz@xxx.com’的这条记录,取得 ID2 的值;
  2. 到主键上查到主键值是 ID2 的行,判断 email 的值是正确的,将这行记录加入结果集;
  3. 取 index1 索引树上刚刚查到的位置的下一条记录,发现已经不满足 email='zhangssxyz@xxx.com’的条件了,循环结束。

这个过程中,只需要回主键索引取一次数据,所以系统认为只扫描了一行。

如果使用的是 index2(即 email(6) 索引结构),执行顺序是这样的:

  1. 从 index2 索引树找到满足索引值是’zhangs’的记录,找到的第一个是 ID1;
  2. 到主键上查到主键值是 ID1 的行,判断出 email 的值不是’zhangssxyz@xxx.com’,这行记录丢弃;
  3. 取 index2 上刚刚查到的位置的下一条记录,发现仍然是’zhangs’,取出 ID2,再到 ID 索引上取整行然后判断,这次值对了,将这行记录加入结果集;
  4. 重复上一步,直到在 idxe2 上取到的值不是’zhangs’时,循环结束。

在这个过程中,要回主键索引取 4 次数据,也就是扫描了 4 行。

通过这个对比,你很容易就可以发现,使用前缀索引后,可能会导致查询语句读数据的次数变多。

但是,对于这个查询语句来说,如果你定义的 index2 不是 email(6) 而是 email(7),也就是说取 email 字段的前 7 个字节来构建索引的话,即满足前缀’zhangss’的记录只有一个,也能够直接查到 ID2,只扫描一行就结束了。

也就是说使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。

于是,你就有个问题:当要给字符串创建前缀索引时,有什么方法能够确定我应该使用多长的前缀呢?

实际上,我们在建立索引时关注的是区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。因此,我们可以通过统计索引上有多少个不同的值来判断要使用多长的前缀。

首先,你可以使用下面这个语句,算出这个列上有多少个不同的值:

mysql> select count(distinct email) as L from SUser;

然后,依次选取不同长度的前缀来看这个值,比如我们要看一下 4~7 个字节的前缀索引,可以用这个语句:

mysql> select count(distinct left(email,4)as L4,count(distinct left(email,5)as L5,count(distinct left(email,6)as L6,count(distinct left(email,7)as L7,
from SUser;

当然,使用前缀索引很可能会损失区分度,所以你需要预先设定一个可以接受的损失比例,比如 5%。然后,在返回的 L4~L7 中,找出不小于 L * 95% 的值,假设这里 L6、L7 都满足,你就可以选择前缀长度为 6。

前缀索引对覆盖索引的影响

前面我们说了使用前缀索引可能会增加扫描行数,这会影响到性能。其实,前缀索引的影响不止如此,我们再看一下另外一个场景。

你先来看看这个 SQL 语句:

select id,email from SUser where email='zhangssxyz@xxx.com';

与前面例子中的 SQL 语句

select id,name,email from SUser where email='zhangssxyz@xxx.com';

相比,这个语句只要求返回 id 和 email 字段。

所以,如果使用 index1(即 email 整个字符串的索引结构)的话,可以利用覆盖索引,从 index1 查到结果后直接就返回了,不需要回到 ID 索引再去查一次。而如果使用 index2(即 email(6) 索引结构)的话,就不得不回到 ID 索引再去判断 email 字段的值。

即使你将 index2 的定义修改为 email(18) 的前缀索引,这时候虽然 index2 已经包含了所有的信息,但 InnoDB 还是要回到 id 索引再查一下,因为系统并不确定前缀索引的定义是否截断了完整信息。

也就是说,使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考虑的一个因素。

其他方式

对于类似于邮箱这样的字段来说,使用前缀索引的效果可能还不错。但是,遇到前缀的区分度不够好的情况时,我们要怎么办呢?

比如,我们国家的身份证号,一共 18 位,其中前 6 位是地址码,所以同一个县的人的身份证号前 6 位一般会是相同的。

假设你维护的数据库是一个市的公民信息系统,这时候如果对身份证号做长度为 6 的前缀索引的话,这个索引的区分度就非常低了。

按照我们前面说的方法,可能你需要创建长度为 12 以上的前缀索引,才能够满足区分度要求。

但是,索引选取的越长,占用的磁盘空间就越大,相同的数据页能放下的索引值就越少,搜索的效率也就会越低。

那么,如果我们能够确定业务需求里面只有按照身份证进行等值查询的需求,还有没有别的处理方法呢?这种方法,既可以占用更小的空间,也能达到相同的查询效率。

答案是,有的。

第一种方式是使用倒序存储。如果你存储身份证号的时候把它倒过来存,每次查询的时候,你可以这么写:
mysql> select field_list from t where id_card = reverse('input_id_card_string');

由于身份证号的最后 6 位没有地址码这样的重复逻辑,所以最后这 6 位很可能就提供了足够的区分度。当然了,实践中你不要忘记使用 count(distinct) 方法去做个验证。

第二种方式是使用 hash 字段。你可以在表上再创建一个整数字段,来保存身份证的校验码,同时在这个字段上创建索引。
mysql> alter table t add id_card_crc int unsigned, add index(id_card_crc);

然后每次插入新记录的时候,都同时用 crc32() 这个函数得到校验码填到这个新字段。由于校验码可能存在冲突,也就是说两个不同的身份证号通过 crc32() 函数得到的结果可能是相同的,所以你的查询语句 where 部分要判断 id_card 的值是否精确相同。

mysql> select field_list from t where id_card_crc=crc32('input_id_card_string') and id_card='input_id_card_string'

这样,索引的长度变成了 4 个字节,比原来小了很多。
在这里插入图片描述

接下来,我们再一起看看使用倒序存储和使用 hash 字段这两种方法的异同点。

首先,它们的相同点是,都不支持范围查询。倒序存储的字段上创建的索引是按照倒序字符串的方式排序的,已经没有办法利用索引方式查出身份证号码在[ID_X, ID_Y]的所有市民了。同样地,hash 字段的方式也只能支持等值查询。

它们的区别,主要体现在以下三个方面:

  1. 从占用的额外空间来看,倒序存储方式在主键索引上,不会消耗额外的存储空间,而 hash 字段方法需要增加一个字段。当然,倒序存储方式使用 4 个字节的前缀长度应该是不够的,如果再长一点,这个消耗跟额外这个 hash 字段也差不多抵消了。
  2. 在 CPU 消耗方面,倒序方式每次写和读的时候,都需要额外调用一次 reverse 函数,而 hash 字段的方式需要额外调用一次 crc32() 函数。如果只从这两个函数的计算复杂度来看的话,reverse 函数额外消耗的 CPU 资源会更小些。
  3. 从查询效率上看,使用 hash 字段方式的查询性能相对更稳定一些。因为 crc32 算出来的值虽然有冲突的概率,但是概率非常小,可以认为每次查询的平均扫描行数接近 1。而倒序存储方式毕竟还是用的前缀索引的方式,也就是说还是会增加扫描行数。
小结

在今天这篇文章中,我跟你聊了聊字符串字段创建索引的场景。我们来回顾一下,你可以使用的方式有:

直接创建完整索引,这样可能比较占用空间;

创建前缀索引,节省空间,但会增加查询扫描次数,并且不能使用覆盖索引;

倒序存储,再创建前缀索引,用于绕过字符串本身前缀的区分度不够的问题;

创建 hash 字段索引,查询性能稳定,有额外的存储和计算消耗,跟第三种方式一样,都不支持范围扫描。

在实际应用中,你要根据业务字段的特点选择使用哪种方式。好了,又到了最后的问题时间。

如果你在维护一个学校的学生信息数据库,学生登录名的统一格式是”学号 @gmail.com", 而学号的规则是:十五位的数字,其中前三位是所在城市编号、第四到第六位是学校编号、第七位到第十位是入学年份、最后五位是顺序编号。

系统登录的时候都需要学生输入登录名和密码,验证正确后才能继续使用系统。就只考虑登录验证这个行为的话,你会怎么设计这个登录名的索引呢?

你可以把你的分析思路和设计结果写在留言区里,我会在下一篇文章的末尾和你讨论这个问题。欢迎你把这篇文章分享给更多的朋友一起阅读。
在这里插入图片描述

上期问题时间

上篇文章中的第一个例子,评论区有几位同学说没有复现,大家要检查一下隔离级别是不是 RR(Repeatable Read,可重复读),创建的表 t 是不是 InnoDB 引擎。我把复现过程做成了一个视频,供你参考。

Video_2024-04-28_105724

在上一篇文章最后,我给你留的问题是,为什么经过这个操作序列,explain 的结果就不对了?这里,我来为你分析一下原因。

delete 语句删掉了所有的数据,然后再通过 call idata() 插入了 10 万行数据,看上去是覆盖了原来的 10 万行。

但是,session A 开启了事务并没有提交,所以之前插入的 10 万行数据是不能删除的。这样,之前的数据每一行数据都有两个版本,旧版本是 delete 之前的数据,新版本是标记为 deleted 的数据。

这样,索引 a 上的数据其实就有两份。

然后你会说,不对啊,主键上的数据也不能删,那没有使用 force index 的语句,使用 explain 命令看到的扫描行数为什么还是 100000 左右?(潜台词,如果这个也翻倍,也许优化器还会认为选字段 a 作为索引更合适)

是的,不过这个是主键,主键是直接按照表的行数来估计的。而表的行数,优化器直接用的是 show table status 的值。

这个值的计算方法,我会在后面有文章为你详细讲解。

说,不对啊,主键上的数据也不能删,那没有使用 force index 的语句,使用 explain 命令看到的扫描行数为什么还是 100000 左右?(潜台词,如果这个也翻倍,也许优化器还会认为选字段 a 作为索引更合适)

是的,不过这个是主键,主键是直接按照表的行数来估计的。而表的行数,优化器直接用的是 show table status 的值。

这个值的计算方法,我会在后面有文章为你详细讲解。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/4619.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

美富特 | 邀您参加2024全国水科技大会暨技术装备成果展览会

王涛 四川美源环能科技有限公司 技术总监 报告题目:绿色智慧水岛如何助力工业园区污水及再生水资源化利用降碳增效 拥有十余年的环保行业从业经验,对各类前沿物化、生化及膜技术均有丰富的研发、设计及应用经验,先后参与多项重点核心技术…

日本宇宙航空研究“Int-Ball2”自由飞行相机机器人采用的Epson IMU

IMU有助于飞行的稳定控制和电池充电的自动对接- 精工爱普生公司(TSE:6724,“Epson”)很高兴地宣布,日本宇宙航空研究开发机构(JAXA)选择了爱普生M-G370系列的惯性测量单元(IMU)&…

开源相机管理库Aravis例程学习(五)——camera-api

开源相机管理库Aravis例程学习(五)——camera-api 简介例程代码函数说明arv_camera_get_regionarv_camera_get_pixel_format_as_stringarv_camera_get_pixel_formatARV_PIXEL_FORMAT_BIT_PER_PIXEL 简介 本文针对官方例程中的:03-camera-api…

Swift - 可选项(Optional)

文章目录 Swift - 可选项(Optional)1. 可选项(Optional)2. 强制解包(Forced Unwrapping)3. 判断可选项是否包含值4. 可选项绑定(Optional Binding)5. 等价写法6. while循环中使用可选…

【论文阅读】互连网络的负载平衡路由算法 (CQR, Channel Queue Routing 通道队列路由)

Channel Queue Routing (CQR) 通道队列路由 1. Channel Queue Routing (CQR) 的动机 (1) 排队论(queueing theory)模型(2) GAL’s latency on tornado traffic(3) Routing tornado traffic with CQR 2. Channel Queue Routing 通道队列路由3. CQR 的性能4. 总结 Channel Queu…

白话机器学习1:分类问题中的评价指标

机器学习中的评价指标非常多,它们用来衡量模型的性能和预测能力。不同类型的机器学习任务可能需要不同的评价指标。以下是一些常见的评价指标,按照不同类型的机器学习任务分类: 对于分类问题: 准确率(Accuracy&#…

[NeurIPS-23] GOHA: Generalizable One-shot 3D Neural Head Avatar

[pdf | proj | code] 本文提出一种基于单图的可驱动虚拟人像重建框架。基于3DMM给粗重建、驱动结果,基于神经辐射场给细粒度平滑结果。 方法 给定源图片I_s和目标图片I_t,希望生成图片I_o具有源图片ID和目标图片表情位姿。本文提出三个分支:…

pytorch中创建maskrcnn模型

0.模型输入/输出参数参见 链接: pytorch的mask-rcnn的模型参数解释 核心代码 GeneralizedRCNN(这里以mask-rcnn来解释说明) # 通过输入图像获取fpn特征图,注意这里的backbone不是直接的resnet,而是fpn化后的 features self.backbone(images.tensors) # 由于是mask-rcnn,故而…

SpringCloud系列(10)--Eureka集群原理及搭建

前言:当注册中心只有一个,而且当这个注册中心宕机了,就会导致整个服务环境不可用,所以我们需要搭建Eureka注册中心集群来实现负载均衡故障容错 Eureka架构原理图 1、Eureka集群原理 2、创建Eureka Server端服务注册中心模块 (1)在…

R语言使用sjPlot包优雅绘制回归模型的交互效应图

交互作用效应(p for Interaction)在SCI文章中可以算是一个必杀技,几乎在高分的SCI中必出现,因为把人群分为亚组后再进行统计可以增强文章结果的可靠性,进行可视化后可以清晰的表明变量之间的关系。不仅如此,交互作用还可以使用来进…

Dockerfile实战(SSH、Systemctl、Nginx、Tomcat)

目录 一、构建SSH镜像 1.1 dockerfile文件内容 1.2 生成镜像 1.3 启动容器并修改root密码 二、构建Systemctl镜像 2.1 编辑dockerfile文件 ​编辑2.2 生成镜像 2.3 启动容器,并挂载宿主机目录挂载到容器中,然后进行初始化 2.4 进入容器验证 三、…

照片误删怎么办?华为手机删除的照片如何恢复?

我们在使用华为手机时,可能会因为各种原因不小心删除一些照片。如果这些照片对我们来说很重要,那么恢复它们是非常必要且急迫的。那么华为手机删除的照片如何恢复呢?本文将为您介绍3种恢复华为手机中误删照片的方法。 如何恢复华为手机中被删…

Codeforces Round 941 (Div. 2)(A-D)

A. Card Exchange(思维 Problem - A - Codeforces 题目大意: 给定n张牌,每次选k张相同的牌,把他们变成k-1张任意的牌,求最后手中最少能有几张牌。 思路: 直接判断这n张牌当中有没有k张一样的牌&#xff0c…

【java9】java9新特性之接口的私有方法

在Java 9中,接口可以包含私有方法(包括静态私有方法和实例私有方法)。这允许接口的设计者创建一些辅助方法,这些方法只能被接口中的其他方法所使用,而不能被实现该接口的类直接访问。 Java7 Java7及之前 &#xff0c…

软件项目管理的主要内容是什么?

目录 一、项目需求分析 二、项目计划制定 三、资源分配与调度 四、进度监控与控制 五、质量管理与保障 六、风险管理与应对 七、沟通协调与团队管理 八、项目收尾与总结 九、其他 一、项目需求分析 项目需求分析是软件项目管理的起始点,它涉及与客户的深入沟…

ubuntu22.04 修改内核源码教程

1. 确认当前内核版本 uname -a 2. 去ubuntu官网下载对应版本内核源码 6.5.0-28.29 : linux package : Ubuntu (launchpad.net) 3. 准备编译环境 sudo apt-get install libncurses5-dev libssl-dev build-essential openssl flex bison libelf-dev tar -xzvf linux_6.5.…

Spring Boot整合Redisson的两种方式

项目场景 Spring Boot整合Redisson的两种方式,方式一直接使用yml配置,方式二创建RedissonConfig配置类。 前言 redisson和redis区别: Redis是一个开源的内存数据库,支持多种数据类型,如字符串、哈希、列表、集合和有序…

Spring快速入门!(超详细)——工厂模式

GOF之工厂模式 设计模式:一种可以被重复利用的解决方案。GoF(Gang of Four),中文名——四人组。《Design Patterns: Elements of Reusable Object-Oriented Software》(即《设计模式》一书),19…

【网络安全】00后程序员,找 Bug 赚了 6,700,000元!他是怎么做到的?

1. 漏洞赏金计划(Bug Bounty Programs) 2. 安全咨询服务 3. 安全培训和教育 4. 写作和发表研究 5. 参与安全竞赛(CTFs) 6. 开发和销售安全工具 在网络安全领域,通过合法的方式利用漏洞赚钱主要涉及以下几种方法。…

【七十二】【算法分析与设计】64. 最小路径和,79. 单词搜索,1143. 最长公共子序列,利用记忆化递归填写dp表,可以很容易解决边界和填表顺序

递归填写dp表 利用递归函数填写dp表,可以很容易完成边界的处理,并且不用考虑填表的顺序. 绝大部分的动态规划可以用递归填表. 不用考虑填表顺序,只需要遍历一遍dfs即可. 64. 最小路径和 给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路…