Linux:Linux网络总结(附下载链接)

文章目录

  • 下载链接
  • 网络问题
    • 综合问题
      • 访问一个网页的全过程?
      • WebSocket
    • HTTP
      • HTTP基本概念
      • GET与POST
      • HTTP特性
      • HTTP缓存技术
      • HTTP的演变
      • HTTP1.1 优化
    • HTTPS
      • HTTP与HTTPS有哪些区别?
      • HTTPS解决了HTTP的哪些问题?
      • HTTPS如何解决的?
      • HTTPS是如何建立连接的?
      • HTTPS 的应用数据是如何保证完整性的
      • HTTPS 一定安全可靠吗?
    • TCP
      • TCP基本认识
      • TCP连接建立
      • TCP连接断开
      • socket编程
      • 重传机制
      • 滑动窗口
      • 流量控制
      • 拥塞控制
      • TCP缺点
      • 如何基于UDP实现可靠传输?
      • TCP优化
      • 快速复用 TIME_WAIT
      • QUIC
      • 序列号和确认号
    • Mac地址表
      • 一个是设备的 MAC 地址,
      • 另一个是该设备连接在交换机的哪个端口上

下载链接

链接: https://pan.baidu.com/s/1hRTh7rSesikisgRUO2GBpA?pwd=utgp 提取码: utgp

最近总结了Linux网络的内容,总结内容如下:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

网络问题

综合问题

访问一个网页的全过程?

  • 发过去

    • 应用层

        1. 浏览器地址输入URL
        • 1.1 浏览器查看缓存,强制和协商缓存
        1. 解析URL获取协议,主机,端口,路径
        1. 生成HTTP请求报文
        1. 获取主机IP
        • 4.1 浏览器缓存

        • 4.2 主机缓存

        • 4.3 DNS域名解析

        • 4.4 路由器解析

    • 传输层

        1. 建立TCP连接,三次握手
        1. 给报文添加TCP报头
        1. 向下传输,发送报文
    • 网络层

        1. 通过解析出的IP添加IP报头
        1. 向下传输,发送报文
    • 网卡

      • 转换为电信号
    • 交换机

      • 电信号到达网线接口,交换机里的模块进行接收,接下来交换机里的模块将电信号转换为数字信号

      • 将包存入缓冲区后,接下来需要查询一下这个包的接收方 MAC 地址是否已经在 MAC 地址表中有记录

        • 如果没有匹配,全部转发
    • 路由器(网卡)

      • 检查MAC地址看看是不是给自己的

        • 是,收到缓冲区当中
      • 去掉MAC头部,查询路由表确定端口

      • 发送包

        • 看网关,如果有网关就向这个IP发

          • 利用ARP查询MAC地址

            • 再做一个有MAC的包

              • 通过交换机到达下一个路由器
  • 收回来

      1. 接收HTTP响应
      1. 根据状态码处理情况
  • 这个问题我基于TCP/IP的网络模型来回答,并且暂时不考虑浏览器缓存的情况。

首先看一下应用层:对于应用层,当用户输入一个网址后,此时会进行URL解析,根据URL构建出想要请求的资源路径,使用的协议,具体方法,请求的IP和端口信息。其中IP需要使用DNS域名解析协议来进行获取,基于这些内容,一个初步的报文就在应用层构建完毕了,此时应用层就完成了自己的任务。

现在数据包来到传输层了,Http协议基本都是遵循TCP协议的,因此我们只考虑TCP协议的情况,到达传输层后,建立TCP的三次握手,如果是HTTPS再构建四次TLS握手,最终可以进行收发数据,此时就给报文添加一个TCP的报头,然后继续向下传递

现在数据包来到网络层了,网络层根据解析出的IP地址以及自身的属性,最终构建出一个IP的报头,添加到数据包前,然后继续向下传递

此时数据包来到了网络接口层,数据包在网络中的传输依赖于路由器和交换机的协同工作。路由器根据路由表选择最佳路径,将数据包转发到下一个网络。交换机则根据MAC地址表快速转发帧到目标网络接口。如果MAC地址表中没有目标MAC地址,交换机会将帧广播到所有端口,直到找到正确的接收者

数据包在进行传输的过程中,网络中的每一个设备都可以对这个包进行接受,接受到包之后,根据MAC地址来判断是不是给自己的,如果是给自己的就留下来,收到缓冲区中,去掉这个没有用的MAC头部,然后到自己的路由表中进行查询,如果此时网关列中没有信息,那么就说明这个数据包已经传输到了指定的服务器,如果网关列中有数据,那么就根据网关中的这个IP,利用ARP协议来获取IP对应的MAC地址,然后插入到这个包前,然后继续进行发送,通过交换机到达下一个路由器,直到到达指定的服务器

到达指定的服务器后,服务器就会对于包进行层层解析,一直解析到应用层的数据,之后构建一个Http响应,再发回去即可

WebSocket

  • 借助HTTP协议进行升级

  • 101状态码 -> 协议切换

  • 完美继承全双工

  • 用报头+有效载荷解决粘包问题

HTTP

HTTP基本概念

  • HTTP是什么?

  • HTTP常见的状态码有哪些?

  • HTTP常见字段有哪些?

GET与POST

  • 有什么区别?

  • 是安全和幂等的吗?

HTTP特性

  • HTTP/1.1 优点有哪些?

    • 简单

    • 跨平台

    • 扩展

      • 报头随意补充

      • 下层随意变化

  • HTTP/1.1 缺点有哪些?

    • 无状态

    • 明文传输

    • 不安全

  • HTTP/1.1 性能如何?

    • 长连接

      • 对比1.0和1.1
    • 管道

      • 请求和响应的队头阻塞

HTTP缓存技术

  • HTTP缓存有哪些实现方式?

    • 强制和协商
  • 什么是强制缓存?

  • 什么是协商缓存?

HTTP的演变

  • HTTP1.1 相比 HTTP/1.0 提高了什么性能?

    • 问题

      • 报头不压缩

      • 冗余头部

      • 响应对头阻塞

      • 无请求优先级

      • 无全双工

  • HTTP/2 做了什么优化?

    • 头部压缩

    • 二进制格式

    • 并发传输

    • 服务器主动推送资源

  • HTTP/3 做了什么优化?

    • 解决TCP队头阻塞

    • 无队头阻塞

      • 只阻塞当前流,其他流不影响
    • 更快的连接建立

      • 1 个 RTT 就可以完成建立连接与密钥协商
    • 连接迁移

      • TCP换连接成本很高

HTTP1.1 优化

  • 如何避免发送HTTP请求?

    • 缓存
  • 如何减少HTTP请求次数?

    • 减少重定向次数

    • 合并请求

    • 延迟发送

      • 一个网页里面的内容慢慢加载
  • 如何减少HTTP响应数据大小?

    • 无损压缩

    • 有损压缩

HTTPS

HTTP与HTTPS有哪些区别?

  • HTTPS 在 TCP 三次握手之后,还需进行 SSL/TLS 的握手过程

HTTPS解决了HTTP的哪些问题?

  • 窃听风险

    • 篡改风险

      • 冒充风险
  • 信息加密

    • 校验机制

      • 身份证书

HTTPS如何解决的?

  • 混合加密(不窃听)

    • 非对称加密用于密钥交换

      • 客户端发给服务端一个会话密钥(CA),服务端用私钥解开,双方就获得了一个通信的密钥对
    • 对称加密用于数据传输

      • HTTPS使用对称加密的会话密钥来加密和解密数据
  • 摘要算法+数字签名

    • 通过哈希算法可以确保内容不会被篡改

      • 通过数字签名(私钥解密)确保哈希值不被替换
  • 数字证书

    • 防止又换私钥又换公钥

      • 进行一个注册(个人信息 + 公钥 + 数字签名)
  • 公钥加密,私钥解密

    • 保证内容传输的安全
  • 私钥加密,公钥解密

    • 保证消息不会被冒充

HTTPS是如何建立连接的?

  • SSL/TLS 协议基本流程

    • 客户端向服务器索要并验证服务器的公钥

    • 双方协商生产「会话秘钥」

    • 双方采用「会话秘钥」进行加密通信

  • TLS 握手

    • ClientHello

    • SeverHello

    • 客户端回应

      • 确认数字证书,取出公钥
    • 服务器的最后回应

      • 计算出本次通信的「会话秘钥」

HTTPS 的应用数据是如何保证完整性的

  • 握手协议

    • TLS 四次握手的过程负责协商加密算法和生成对称密钥
  • 记录协议

    • 保护应用程序数据并验证其完整性和来源,对 HTTP 数据加密
  • 数据加密过程

    • 消息被分割和压缩

    • 加上消息认证码MAC 值

    • 压缩的片段和消息认证码一起进行加密

    • 带上报头,组成报文

HTTPS 一定安全可靠吗?

  • https本身一定是没问题的,一定是客户端本身有问题

    • 电脑中病毒,证书被换了

      • 提醒证书可能被劫持,执意访问
  • HTTPS双向认证,如果服务端觉得客户端不值得信任,就不通信

TCP

TCP基本认识

  • TCP报头?

  • 为什么需要TCP?工作在哪?

  • 什么是TCP?

    • 面向连接可靠字节流
  • 什么是TCP连接?

    • 需要客户端与服务端达成上述三个信息的共识

      • socket

        • ip+端口
      • 序列号

      • 窗口大小

  • 如何确定TCP连接?

    • 四元组

      • 这个很重要,当判断TCP连接建立,就要看这个四元组
  • TCP和UDP的区别和应用场景?

    • 连接

    • 可靠性

    • 传输方式

    • 服务对象

      • 一对一…
    • 拥塞和流量控制

    • 首部开销

    • 分片不同

  • 为什么TCP有首部长度而UDP没有?

  • 为什么UDP有包长度而TCP没有?

    • 历史问题

TCP连接建立

  • TCP三次握手过程和状态变迁?

    • 第三次握手是可以携带数据的,前两次握手是不可以携带数据的
  • 如何查看TCP状态?

  • 为什么是三次,不是两次四次?

    • 验证收发能力

      • 历史连接

        • 同步序列号

          • 资源浪费
    • 「两次握手」:无法防止历史连接的建立,会造成双方资源的浪费,也无法可靠的同步双方序列号;

    • 「四次握手」:三次握手就已经理论上最少可靠连接建立,所以不需要使用更多的通信次数。

  • 为什么初始化序列号都不一样?

    • 为了防止历史报文被下一个相同四元组的连接接收

    • 为了安全性,防止黑客伪造的相同序列号的 TCP 报文被对方接收

  • 序列号是如何随机产生的?

    • 随机数是会基于时钟计时器递增的,基本不可能会随机成一样的初始化序列号
  • TCP层为什么需要MSS?

    • 如果一个 IP 分片丢失,整个 IP 报文的所有分片都得重传
  • 第一次握手丢失会怎么样?

  • 第二次握手丢失会怎么样?

    • 都发
  • 第三次握手丢失会怎么样?

  • 什么是SYN攻击?如何避免?

    • 占满服务端的半连接队列

    • 调大 netdev_max_backlog

      • 增大 TCP 半连接队列

        • 开启 tcp_syncookies

          • 减少 SYN+ACK 重传次数

TCP连接断开

  • TCP四次挥手过程和状态变迁?

  • 为什么需要四次挥手?

    • close和shutdown的区别
  • 第一次挥手丢失了会怎么样?

  • 第二次挥手丢失了会怎么样?

  • 第三次挥手丢失了会怎么样?

  • 第四次挥手丢失了会怎么样?

  • 为什么TIME_WAIT时间是2MSL?

    • 2个报文最大生存时间
  • 为什么需要TIME_WAIT?

    • 防止历史数据

    • 优雅的关闭

  • TIME_WAIT太多会怎么样?

    • 系统+端口
  • 如何优化TIME_WAIT?

  • 如果建立连接后,客户端故障怎么办?

    • TCPkeepalive

      • 失活报文看看活不活
  • 如果建立连接后,服务端进程崩溃怎么办?

socket编程

  • TCP的socket编程?

  • listen参数的意义?

    • accept队列大小
  • accept是在哪一步?

  • 客户端close后的流程?

  • 没有accept还能连接吗?

    • accept只是从队列取元素
  • 没有listen还能连接吗?

    • 自连接,哈希表

重传机制

  • 超时重传?

    • 数据包丢失

      • 确认应答丢失
  • 快速重传?

    • 优化,但不保底
  • SACK是什么?

    • 标识已收到的报文
  • D-SACK是什么?

    • 标识重复收到的报文

滑动窗口

  • 发送窗口?

  • 接收窗口?

流量控制

  • 缓冲区和滑动窗口的关系?

    • 不能又收缩又少缓存
  • 窗口关闭?

    • 打满了,不再收数据

    • 问题?解决?

  • 什么是糊涂窗口综合征?

    • 每次发送数据很小,效率低

拥塞控制

  • 慢启动

  • 拥塞避免

  • 拥塞发生

  • 快速恢复

TCP缺点

  • 升级困难 改内核

  • 队头阻塞

  • 建立连接延迟

  • 网络迁移

如何基于UDP实现可靠传输?

  • 序列号

  • 确认应答

  • 超时重传

  • 流量控制

  • 拥塞控制

  • 优化TCP连接建立

  • 网络迁移

TCP优化

  • 绕过三次握手

    • cookie

快速复用 TIME_WAIT

  • 历史 RST 报文可能会终止后面相同四元组的连接,因为 PAWS 检查到即使 RST 是过期的,也不会丢弃

  • 处于新连接建立可能收到旧的FIN+ACK,回RST
    如果第四次挥手的 ACK 报文丢失了,有可能被动关闭连接的一方不能被正常的关闭

QUIC

  • 可靠传输

    • Packet Number 单调递增
      配合 Stream ID 与 Offset

      • 可以更加精确计算 RTT,没有 TCP 重传的歧义性问题;

      • 可以支持乱序确认,因为丢包重传将当前窗口阻塞在原地,而 TCP 必须是顺序确认的,丢包时会导致窗口不滑动

  • 队头阻塞

    • 每一个stream分配一个独立的滑动窗口
  • 流量控制

    • window_update 帧告诉对端自己可以接收的字节数

    • BlockFrame 告诉对端由于流量控制被阻塞了

    • 基于Stream和Connection的控制

  • 拥塞控制

    • 在应用层可以随便改算法,主流使用TCP的
  • 连接建立

    • 321RTT -> 210RTT
  • 网络迁移

    • 基于客户端服务端连接 ID,无需重新建立

序列号和确认号

  • 序列号 = 上一次发送的序列号 + len

  • 确认号 = 上一次收到的报文中的序列号 + len

Mac地址表

一个是设备的 MAC 地址,

另一个是该设备连接在交换机的哪个端口上

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/45992.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

# Redis 入门到精通(二)通用指令

Redis 入门到精通(二)通用指令 一、redis 通用指令-key 基本操作 1、key 特征 key是一个字符串,通过key获取redis中保存的数据。 2、key 应该设计哪些操作? 对于 key 自身状态的相关操作,例如:删除,判定存在&…

企业网络实验(vmware虚拟机充当DHCP服务器)所有IP全部保留,只为已知mac分配固定IP

文章目录 需求实验修改dhcp虚拟机配置文件测试PC获取IP查看user-bind 需求 (vmware虚拟机充当DHCP服务器)所有IP全部保留,只为已知mac分配固定IP 实验 前期配置: https://blog.csdn.net/xzzteach/article/details/140406092 后续配置均在以上配置的前…

keepalive和haproxy

1、keepalive 1.1概念 调度器的高可用 vip地址主备之间的切换,主在工作时,vip地址只在主上,主停止工作,vip漂移到备服务器 在主备的优先级不变的情况下,主恢复工作,vip会飘回到主服务器 1、配优先级 …

【RabbitMQ】一文详解消息可靠性

目录: 1.前言 2.生产者 3.数据持久化 4.消费者 5.死信队列 1.前言 RabbitMQ 是一款高性能、高可靠性的消息中间件,广泛应用于分布式系统中。它允许系统中的各个模块进行异步通信,提供了高度的灵活性和可伸缩性。然而,这种通…

.NET MAUI开源架构_1.学习资源分享

最近需要开发Android的App,想预研下使用.NET开源架构.NET MAUI来开发App程序。因此网上搜索了下相关资料,现在把我查询的结果记录下,方便后面学习。 1.官方文档 1.1MAUI官方学习网站 .NET Multi-Platform App UI 文档 - .NET MAUI | Micro…

Open-TeleVision——通过VR沉浸式感受人形机器人视野:兼备远程控制和深度感知能力

前言 7.3日,我司七月在线(集AI大模型职教、应用开发、机器人解决方案为一体的科技公司)的「大模型机器人(具身智能)线下营」群里的一学员发了《Open-TeleVision: Teleoperation with Immersive Active Visual Feedback》这篇论文的链接,我当时快速看了一…

shell脚本之if/case语句

一、条件测试 1、1 返回码 $? $? :返回码,用来判断命令或者脚本是否执行成功。 0 :表示true ,成功;非0 则表示flase ,失败。 1、2 test命令 可以进行条件测试,然后根据返回值来判断条件是否成立 -e…

RISC-V异常处理流程概述(2):异常处理机制

RISC-V异常处理流程概述(2):异常处理机制 一、异常处理流程和异常委托1.1 异常处理流程1.2 异常委托二、RISC-V异常处理中软件相关内容2.1 异常处理准备工作2.2 异常处理函数2.3 Opensbi系统调用的注册一、异常处理流程和异常委托 1.1 异常处理流程 发生异常时,首先需要执…

4、linux相关基础知识

1、gcc编译过程 .c通过编译生成.o文件,.out目标文件进过链接生成.so库文件。 2、在C中可以使用system(("mkdir -p "path).c_str())创建目录。c_str()把string转化为c字符串,便于system命令识别,system命令会新启动一个进程来创建文…

移动硬盘有盘符打不开:深度解析与高效恢复指南

在数字化信息爆炸的今天,移动硬盘作为便捷的数据存储与传输工具,其重要性不言而喻。然而,当您遇到移动硬盘有盘符却无法正常打开的情况时,无疑会给您的工作和生活带来不小的困扰。本文将深入探讨移动硬盘有盘符打不开的原因&#…

东软“引战”国家队 通用技术“补链”大国重器

向来低调温和的东软创始人刘积仁,这一次抛出了“王炸”级的资产交易。 7月3日,《多肽链》获得一则足以引爆国内医疗设备行业的投资信息:被东软集团视为核心资产、掌上明珠的东软医疗,成功引入通用技术集团资本有限公司与中国国有…

BI佐罗,居然抄袭洗稿我的文章

必须曝光此博主不当行径。 4月2日这天发表的原创文章:BI报表系统建设10大坑,因为都是切身的实际项目经验总结,获得了很多人的关注。 我觉得写文章要写的是亲身、真的做过的专业的项目经验,而不是信口开河随口忽悠。 如果有些博…

Fancybox: 号称世界上最流行的灯箱脚本!这款“花盒“为什么与众不同?

今天要分享的是一个灯箱脚本库:Fancybox。最近了不起刚好用到它。这里就和大家分享下。 简介 Fancybox 是终极的 JavaScript 灯箱替代品,为多媒体显示中的优质用户体验设定了标准。支持图像、视频、地图、内联内容、iframe 和任何其他 HTML 内容。 此…

如何在SpringCloud中使用Kafka Streams实现实时数据处理

使用Kafka Streams在Spring Cloud中实现实时数据处理可以帮助我们构建可扩展、高性能的实时数据处理应用。Kafka Streams是一个基于Kafka的流处理库,它可以用来处理流式数据,进行流式计算和转换操作。 下面将介绍如何在Spring Cloud中使用Kafka Streams实…

Pytorch中nn.Sequential()函数创建网络的几种方法

1. 创作灵感 在创建大型网络的时候,如果使用nn.Sequential()将几个有紧密联系的运算组成一个序列,可以使网络的结构更加清晰。 2.应用举例 为了记录nn.Sequential()的用法,搭建以下测试网络&…

数字电路-建立时间和保持时间详解

对于数字系统而言,建立时间(setup time)和保持时间(hold time)是数字电路时序的基础。数字电路系统的稳定性,基本取决于时序是否满足建立时间和保持时间。我自己在初学时一度很难理解清楚他们的概念&#x…

基于JAVA+SpringBoot+Vue+uniApp小程序的心理健康测试平台

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 该系统由三个核心角色…

【PVE】新增2.5G网卡作为主网卡暨iperf测速流程

【PVE】新增2.5G网卡作为主网卡暨iperf测速流程 新增网卡 新增网卡的首先当然需要关闭PVE母机,把新网卡插上,我用淘宝遥现金搞了个红包,花了26元买了块SSU的2.5G网卡。说实话这个价位连散热片都没有,确实挺丐的。稍后测下速度看…

移动硬盘有盘符打不开的全方位解决方案

一、现象描述:移动硬盘有盘符却无法访问 在日常的数据存储与传输中,移动硬盘无疑扮演着举足轻重的角色。然而,不少用户可能会遇到这样一个令人头疼的问题:移动硬盘在连接电脑后,虽然能正常显示盘符,但双击…

【算法】单调队列

一、什么是单调队列 单调队列是一种数据结构,其特点是队列中的元素始终保持单调递增或递减,主要用于维护队列中的最小值或最大值。 不同于普通队列只能从队头出队、队尾入队,单调队列为了维护其特征,还允许从队尾出队 不管怎么…