接前一篇:RAG实践:ES混合搜索BM25+kNN(cosine)
https://blog.csdn.net/Xin_101/article/details/140230948
本文主要讲解混合搜索相关理论以及计算推导过程,
包括BM25、kNN以及ES中使用混合搜索分数计算过程。
详细讲解:
(1)ES中如何通过BM25计算关键词搜索分数;
(2)kNN如何通过consine计算语义/向量搜索最终分数,不是直接使用consine距离;
(3)混合搜索最终得分是如何计算的,如何进行归一化优化。
Note:提前声明
下面这张是使用ik分词器进行计算的,为了好截图,后文讲解则是使用默认分词器,
不影响过程分析。
4 理论
4.1 BM25
BM25(Best Matching 25)匹配算法用于文本检索,其中,25,查阅相关网络资源说是第25次迭代的算法,BM25基于TF-IDF,并进行了改进,引入了可调整参数k1和b。
k1:为饱和函数,防止某额词在文档中出现次数过多导致权重过大;
b:为文档长度因子,使文档长度堆权重的影响不是线性的,更好地适应不同长度的文档。
这也是BM25优点以及缺点的来源:
- 优点
(1)k1和b,考虑文档长度,可以有效避免文档长度带来的影响;
(2)根据不同领域的数据,可以调整k1和b,获取更好的搜索效果,适应不同领域的数据。 - 缺点
(1)需要高质量的数据;
(2)参数k1和b直接影响检索效果,需要不断优化调整,以适应具体的场景。
B M 25 ( Q , D ) = ∑ i = 1 n I D F ( q i ) ⋅ f ( q i , D ) ⋅ ( k 1 + 1 ) f ( q i , D ) ⋅ k 1 ⋅ ( 1 − b + b ⋅ ∣ D ∣ a v g d l ) BM25(Q, D)=\sum_{i=1}^{n}IDF(q_{i})·\frac{f(q_{i}, D)·(k_{1}+1)}{f(q_{i}, D)·k_{1}·(1-b+b·\frac{|D|}{avgdl})} BM25(Q,D)=i=1∑nIDF(qi)⋅f(qi,D)⋅k1⋅(1−b+b⋅avgdl∣D∣)f(qi,D)⋅(k1+1)
其中:
T F ( q i ) = f ( q i , D ) ⋅ ( k 1 + 1 ) f ( q i , D ) ⋅ k 1 ⋅ ( 1 − b + b ⋅ ∣ D ∣ a v g d l ) TF(q_{i})=\frac{f(q_{i}, D)·(k_{1}+1)}{f(q_{i}, D)·k_{1}·(1-b+b·\frac{|D|}{avgdl})} TF(qi)