语言模型演进:从NLP到LLM的跨越之旅

在人工智能的浩瀚宇宙中,自然语言处理(NLP)一直是一个充满挑战和机遇的领域。随着技术的发展,我们见证了从传统规则到统计机器学习,再到深度学习和预训练模型的演进。如今,我们站在了大型语言模型(LLM)的门槛上,它们正在重新定义我们与机器交流的方式。本文将深入探讨LLM的发展历程、技术路线、以及它们对未来AI领域的影响。

引言

自然语言处理(NLP)的目标是让机器能够理解、解释和生成人类语言。这一领域的发展经历了几个重要的阶段,每个阶段都标志着对语言理解深度的一次飞跃。从早期的基于规则的系统,到统计学习方法,再到深度学习模型,直至今日的大型语言模型(LLM),每一步都是对前一阶段的超越。
在这里插入图片描述

从规则到统计:NLP的早期探索

规则阶段(1956—1992)

在NLP的早期,研究者依赖于手工编写的规则来处理语言。这一阶段的技术栈包括有限状态机和基于规则的系统。例如,Apertium就是一个基于规则的机器翻译系统,它展示了早期研究者如何通过人工整理词典和编写规则来实现语言的自动翻译。
在这里插入图片描述

统计机器学习阶段(1993—2012)

随着时间的推移,研究者开始转向统计学习方法,使用支持向量机(SVM)、隐马尔可夫模型(HMM)、最大熵模型(MaxEnt)和条件随机场(CRF)等工具。这一阶段的特点是少量人工标注领域数据与人工特征工程的结合,标志着从手工编写规则到机器自动从数据中学习知识的转变。
在这里插入图片描述

深度学习的突破:开启新纪元

深度学习阶段(2013—2018)

深度学习的出现为NLP带来了革命性的变化。以编码器-解码器(Encoder-Decoder)、长短期记忆网络(LSTM)、注意力机制(Attention)和嵌入(Embedding)为代表的技术,使得模型能够处理更大规模的数据集,并且几乎不需要人工特征工程。Google的神经机器翻译系统(2016)就是这一阶段的代表之作。
在这里插入图片描述

预训练模型的兴起:知识的自我发现

预训练阶段(2018—2022)

预训练模型的出现标志着NLP领域的又一次飞跃。以Transformer和注意力机制为核心的技术栈,结合海量无标注数据进行自监督学习,生成通用知识,再通过微调适应特定任务。这一阶段的突变性非常高,因为它扩展了可利用的数据范围,从标注数据拓展到了非标注数据。
在这里插入图片描述

LLM的新时代:智能与通用性的融合

LLM阶段(2023—?)

LLM代表了语言模型的最新发展,它们通常采用解码器为主的架构,结合了Transformer和强化学习人类反馈(RLHF)。这一阶段的特点是两阶段过程:预训练和与人类对齐。预训练阶段利用海量无标注数据和领域数据,通过自监督学习生成知识;与人类对齐阶段则通过使用习惯和价值观对齐,使模型能够适应各种任务。
在这里插入图片描述
回顾各个发展阶段可以看到以下趋势:

数据: 从数据到知识,越来越多数据被利用起来/未来:更多文本数据、更多其它形态数据→任何数据
算法: 表达能力越来越强;规模越来越大;自主学习能力越来越强;从专业向通用/未来:Transformer目前看够用,新型模型(应该强调学习效率)?→AGI?
人机关系: 位置后移,从教导者到监督者/未来:人机协作,机向人学习→人向机学习?→机器拓展人类知识边界

在这里插入图片描述

LLM技术发展路线:多样化的路径

在过去的几年中,LLM技术发展呈现出多样化的路径,包括BERT模式、GPT模式和T5模式等。每种模式都有其特点和适用场景。
在这里插入图片描述

BERT模式(Encoder-Only)

BERT模式通过双向语言模型预训练和任务微调的两阶段(双向语言模型预训练+任务Fine-tuning)过程,适用于自然语言理解类任务。BERT预训练从通用数据中提取通用知识,而微调则从领域数据中提取领域知识。
在这里插入图片描述
适合解决的任务场景:比较适合自然语言理解类,某个场景的具体任务,专而轻;
在这里插入图片描述

GPT模式(Decoder-Only)

GPT模式则从单向语言模型预训练和zero shot/few shot prompt或指令的一阶段(单向语言模型预训练+zero shot/few shot prompt/Instruct)过程中发展而来,适合自然语言生成类任务。GPT模式的模型通常是目前规模最大的LLM,它们能够处理更广泛的任务。
在这里插入图片描述
适用场景:比较适合自然语言生成类任务,目前规模最大的LLM,都是这种模式:GPT 系列,PaLM,LaMDA……,重而通;生成类任务/通用模型 建议GPT模式;
在这里插入图片描述

T5模式(Encoder-Decoder)

T5模式结合了BERT和GPT的特点,适用于生成和理解任务。T5模式的填空任务(Span Corruption)是一种有效的预训练方法,它在自然语言理解类任务中表现出色。两阶段(单向语言模型预训练+Fine-tuning为主)
在这里插入图片描述
特点:形似GPT,神似Bert
适用场景:生成和理解都行,从效果上看比较适合自然语言理解类任务,国内很多大型LLM采取这种模式;如果是单一领域的自然语言理解类任务,建议使用T5模式;
在这里插入图片描述

为什么超大LLM都是GPT模式

超大LLM:追求zero shot/ few shot/instruct 效果
目前的研究结论

(模型规模不大时):

  • 自然语言理解类:T5模式效果最好。
  • 自然语言生成类:GPT模式效果最好。
  • Zero shot: GPT模式效果最好。
    如果Pretrain后引入多任务fine-tuning,则T5模式效果好(结论存疑:目前的实验Encoder-Decoder都是Decoder-only参数量的两倍,结论是否可靠?)

目前的研究结论(超大规模):
事实:几乎所有超过100B的LLM模型,都采取GPT模式

可能的原因:
1.Encoder-Decoder里的双向attention,损害zero shot能力(Check)
2.Encoder-Decoder结构在生成Token时,只能对Encoder高层做attentionDecoder-only结构在生成Token时,可以逐层Attention,信息更细粒度
3.Encoder-Decoder训练“中间填空”,生成最后单词Next Token,存在不一致性Decoder-only结构训练和生成方式一致

超大LLM的挑战与机遇

随着模型规模的增长,研究者面临着如何有效利用参数空间的挑战。Chinchilla模型的研究表明,在数据充足的情况下,当前的LLM规模可能比理想规模更大,存在参数空间的浪费,然而,Scaling Law也指出,模型规模越大,数据越多,训练越充分,LLM模型的效果越好。比较可行的思路是:先做小(GPT 3本来不应该这么大),再做大(充分利用模型参数后,继续做大)。
在这里插入图片描述

当然鉴于多模态LLM需要更丰富的现实环境感知能力,对此LLM参数也提出更高的要求。
多模态LLM:视觉输入(图片、视频)、听觉输入(音频)、触觉输入(压力)
在这里插入图片描述
面临问题:多模态LLM看着效果还不错,很大程度依赖于人工整理的大数据集

如 ALIGN:1.8B 图文/LAION:5.8B图文数据(经过CLIP过滤,目前最大图文数据)目前是文字带图像飞?

图像处理:自监督技术路线在尝试,尚未走通(对比学习/MAE)/如果能走通会是AI领域另外一次巨大技术突破;

如果能走通,目前的一些图像理解类任务(语义分割/识别等)估计会被融入LLM,进而消失

在这里插入图片描述

提升LLM的复杂推理能力

尽管当前的LLM具备一定的简单推理能力,但在复杂推理方面仍有不足。例如,多位数加法等任务对LLM来说仍然是一个挑战。研究者正在探索如何通过技术手段,如语义分解,将复杂推理能力蒸馏到更小的模型中。
在这里插入图片描述
当然也可以通过能力外包的形式绕过这个问题,如与工具结合:计算能力(外部计算器)、新信息查询(搜索引擎)等能力借助外部工具完成。
在这里插入图片描述

LLM与物理世界的交互

具身智能的概念将LLM与机器人技术结合起来,通过与物理世界的交互,利用强化学习获得具身智能。例如,Google的PaLM-E模型结合了540B的PaLM和22B的ViT,展示了LLM在多模态环境下的潜力。
在这里插入图片描述
在这里插入图片描述

其他研究方向

  1. 新知识的获取:目前有一定困难,也有一些手段(LLM+Retrieval)
  2. 旧知识的修正:目前有一些研究成果,尚需优化
  3. 私域领域知识的融入:Fine-tune?
  4. 更好的理解命令:尚需优化(一本正经的胡说八道)
  5. 训练推理成本的降低:未来一年到两年会快速发展
  6. 中文评测数据集的构建:能力试金石。英文目前有一些评测集,比如HELM/BigBench等,中文缺乏/多任务、高难度、多角度的评测数据集。

结语

本文深入探讨了LLM的发展历程、技术路线以及它们对未来AI领域的影响。LLM的发展不仅仅是技术的进步,更是我们对机器理解能力的一次深刻反思。从规则到统计,再到深度学习和预训练,每一步都为我们提供了新的视角和工具。如今,我们站在大型语言模型的新时代门槛上,面对着前所未有的机遇和挑战。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/45138.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【接口设计】如何设计统一 RESTful 风格的数据接口

如何设计统一 RESTful 风格的数据接口 1.版本控制1.1 通过 URL1.2 通过自定义请求头1.3 通过 Accept 标头 2.过滤信息3.确定 HTTP 的方法4.确定 HTTP 的返回状态5.定义统一返回的格式 近年来,随着移动互联网的发展,各种类型的客户端层出不穷。如果不统一…

国漫推荐11

1.《元龙》 2.《恶魔法则》2023年9月29日 3.《三十六骑》 4.《山河剑心》 5.剑网3侠肝义胆沈剑心 《剑网3侠肝义胆沈剑心》 《剑网3侠肝义胆沈剑心 第二季》 《剑网3侠肝义胆沈剑心之长漂》(番外) 《剑网3侠肝义胆沈剑心 第三季》 6.《仙逆》东方玄幻…

生产管理系统功能全拆解:哪些功能是企业真正需要的?

制造业的伙伴经常听到“生产管理”,但很多人可能只是模糊地知道它与工厂、生产线有关。那么,到底什么是生产管理呢?它的重要性又体现在哪里呢?接下来,我就以轻松的方式,带大家走进生产管理的世界&#xff0…

微信闪退怎么回事?实用技巧助你轻松应对

在使用微信的过程中,偶尔会遇到闪退的问题,这不仅影响我们的日常沟通,还可能导致重要信息的丢失。那么,微信闪退怎么回事呢?闪退的原因可能有很多,包括软件问题、手机存储不足、系统不兼容等。本文将详细分…

笔记本电脑数据丢失如何恢复?

在计算机网络日益普及的今天,计算机已波及到人们的生活、工作、学习及消费等广泛领域,其服务和管理也涉及政府、工商、金融及用户等诸多方面。笔记本电脑等电子产品被各行各业的人所喜爱和接受,早已成为人们出差的必备品,可以用来…

keepalived高可用集群

一、keepalived: 1.keepalive是lvs集群中的高可用架构,只是针对调度器的高可用,基于vrrp来实现调度器的主和备,也就是高可用的HA架构;设置一台主调度器和一台备调度器,在主调度器正常工作的时候&#xff0…

OS_同步与互斥

2024-07-04:操作系统同步与互斥学习笔记 第9节 同步与互斥 9.1 同步互斥的基本概念9.1.1 同步关系9.1.2 互斥关系9.1.3 临界资源9.1.4 临界区9.1.5 同步机制应遵循规则 9.2 软件同步机制9.2.1 单标志法9.2.2 双标志先检查法9.2.3 双标志后检查法9.2.4 peterson算法 …

jstat命令介绍

jstat:查看JVM统计信息 一 基本情况二 基本语法2.1 option参数1. 类装载相关的:2. 垃圾回收相关的-gc:显示与GC相关的堆信息。包括Eden区、两个Survivor区、老年代、永久代等的容量、已用空间、GC时间合计等信息。-gccapacity:显示…

【C++】C++-机房收费管理系统(源码+注释)【独一无二】

👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉公众号👈:测试开发自动化【获取源码商业合作】 👉荣__誉👈:阿里云博客专家博主、5…

LeetCode之最长回文子串

1.题目链接 5. 最长回文子串 - 力扣(LeetCode)https://leetcode.cn/problems/longest-palindromic-substring/description/ 2.题目解析 对于这道题目我们可以使用动态规划的思路来求解,具体思路是,对于一个长度大于2的子串&…

生成式信息检索(问答系统与信息检索的进步)

文章目录 什么是问答系统(Question Answering Systems)检索系统的演变经典检索系统“Term” 文档搜素的最小单位倒排索引词嵌入的出现预训练语言模型 用于问答的语言模型设计方案选择:封闭式与开放式问答系统对比方案A:封闭式生成…

【干货】一文带你看懂什么是渠道分销?如何管理渠道分销

在当今竞争激烈的市场环境中,企业想要扩大市场份额、提高产品或服务的可见度,有效的渠道分销策略是关键。 什么是渠道分销? 渠道分销,简而言之,是指企业利用中间商(如经销商、代理商、零售商等&#xff0…

springboot解压文件流zip压缩包

springboot解压文件流zip压缩包 原始文件存储的地方&#xff1a; 需要在当前目录下解压该文件&#xff0c;如下图&#xff1a; 代码示例&#xff1a; private Result<String> getLocationGuideLayerName(YbYstbtqTaskResolveParam params, String fishnetLayerName)…

华为od100问持续分享-1

我是一名软件开发培训机构老师&#xff0c;我的学生已经有上百人通过了华为OD机试&#xff0c;学生们每次考完试&#xff0c;会把题目拿出来一起交流分享。 重要&#xff1a;2024年5月份开始&#xff0c;考的都是OD统一考试&#xff08;D卷&#xff09;&#xff0c;题库已经整…

入门PHP就来我这(高级)24 ~ Session判断用户登录

有胆量你就来跟着路老师卷起来&#xff01; -- 纯干货&#xff0c;技术知识分享 路老师给大家分享PHP语言的知识了&#xff0c;旨在想让大家入门PHP&#xff0c;并深入了解PHP语言。 上一篇我们介绍了Session管理部分的概念&#xff0c;本文通过session来改写一些用户登录&…

一致性Hash问题及解决方案

Hash算法的应用场景 请求的负载均衡 Nginx的ip_hash策略可以在客户端ip不发生变化的情况下&#xff0c;将其发出的请求始终路由到同一个目标服务器上&#xff0c;实现会话粘滞&#xff0c;避免处理session共享问题。 如果没有ip_hash策略&#xff0c;可以通过维护一张映射表的…

ts实现将相同类型的数据通过排序放在一起

看下效果&#xff0c;可以将相同表名称的字段放在一起 排序适用于中英文、数字 // 排序 function sortByType(items: any) {// 先按照类型进行排序items.sort((a: any, b: any) > {if (a.label < b.label) return -1;if (a.label > b.label) return 1;return 0;});r…

鸿蒙语言基础类库:【@ohos.application.testRunner (TestRunner)】 测试

TestRunner TestRunner模块提供了框架测试的能力。包括准备单元测试环境、运行测试用例。 如果您想实现自己的单元测试框架&#xff0c;您必须继承这个类并覆盖它的所有方法。 说明&#xff1a; 开发前请熟悉鸿蒙开发指导文档&#xff1a;gitee.com/li-shizhen-skin/harmony-…

[氮化镓]Kevin J. Chen组新作—肖特基p-GaN HEMTs正栅ESD机理研究

这篇文章是发表在《IEEE Electron Device Letters》上的一篇关于Schottky型p-GaN栅极高电子迁移率晶体管&#xff08;HEMTs&#xff09;的正向栅极静电放电&#xff08;ESD&#xff09;机理研究的论文。文章由Jiahui Sun等人撰写&#xff0c;使用了基于碳化硅&#xff08;SiC&a…

8626 原子量计数

分析&#xff1a; 1. **读取输入**&#xff1a;首先&#xff0c;我们需要读取输入中的第一行&#xff0c;了解有多少个化学式需要处理。之后&#xff0c;对于每个化学式&#xff0c;我们逐行读取并进行处理。 2. **解析化学式**&#xff1a;对于每个化学式&#xff0c;我们需要…