Transformer-LSTM预测 | Matlab实现Transformer-LSTM时间序列预测

Transformer-LSTM预测 | Matlab实现Transformer-LSTM时间序列预测

目录

    • Transformer-LSTM预测 | Matlab实现Transformer-LSTM时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现Transformer-LSTM时间序列预测,Transformer-LSTM;

2.运行环境为Matlab2023b及以上;

3.data为数据集,输入输出单个变量,一维时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复Matlab实现Transformer-LSTM时间序列预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test  = t_test' ;%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/44258.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浅谈“不要卷模型,要卷应用”

目录 1.概述 2.AI技术应用场景探索 3.避免超级应用陷阱的策略 3.1.追求DAU的弊端 3.2.平衡用户活跃度与应用实用性的策略 4.个性化智能体开发 4.1. 用户需求分析与数据收集 4.2. 技术选择与开发 4.3. 个性化算法设计 4.4. 安全性与隐私保护 4.5. 多渠道集成与响应机…

用vite创建Vue3项目的步骤和文件解释

创建项目的原则是不能出现中文和特殊字符,最好为小写字母,数字,下划线组成 之后在visual studio code 中打开创建的这个项目 src是源代码文件 vite和webpack是有去别的,对于这个vite创建的工程来说index.js是入口文件 在终端里面输…

数字探秘:用神经网络解密MNIST数据集中的数字!

用神经网络解密MNIST数据集中的数字! 一. 介绍1.1 MNIST数据集简介1.2 MLP(多层感知器)模型介绍1.3 目标:使用MLP模型对MNIST数据集中的0-9数字进行分类 二.数据预处理2.1 数据集的获取与加载2.2 数据集的探索性分析(E…

骗子用出国月薪3万骗了1000多万上千名求职者被骗

日前,江苏省南通市崇川区人民法院开庭审理了一起涉及诈骗的案件,该案件 审理后引发全国求职者的关注以及热议。根据了解得知,这起案件的主犯是利用出 国劳务的虚假高薪职位位诱饵,最终有上千名求职者被骗上当了。文章来源于:股城网www.gucheng.com 根据法院审…

微信文件太大传不了?学会这些,微信秒变大文件传输神器

在数字化时代,微信已成为我们日常沟通的重要桥梁。然而,当需要在微信上传输大文件时,文件大小的限制往往让人束手无策。 今天,我们将分享一些实用的技巧,帮助你在微信上轻松传输大文件,无论是工作文档还是…

HTTP 概况

Web的应用层协议是超文本传输协议(HyperTextTransferProtocol,HTTP),它是 Web的核心。HTTP由两个程序实现:一个客户程序和一个服务器程序。客户程序和服务器程序运行在不同的端系统中,通过交换HTTP报文进行会话。HTTP定义了这些报文的结构以及…

彩虹小插画:成都亚恒丰创教育科技有限公司

彩虹小插画:色彩斑斓的梦幻世界 在繁忙的生活节奏中,总有一抹温柔的色彩能悄然触动心弦,那就是彩虹小插画带来的梦幻与宁静。彩虹,这一自然界的奇迹,被艺术家们巧妙地融入小巧精致的插画之中,不仅捕捉了瞬…

Oracle基础以及一些‘方言’(一)

1、什么是Oracle ORACLE数据库系统是美国ORACLE公司(甲骨文)提供的以分布式数据库为核心的一组软件产品,是最流行的客户/服务器(CLIENT/SERVER)或B/S体系结构的数据库之一。 ORACLE 通常应用于大型系统的数据库产品。 ORACLE 数据库是目前世界…

vue使用 “xlsx-style“: “^0.8.13“ 报错

关于jszip not a constructor报错配置config.js文件后可能还报错的问题: 在node_modules处找到node_modules\xlsx-style\xlsx.js 文件。 将 if(typeof jszip undefined) jszip require(./jszip).JSZip;(应该在xlsx.js文件1339行左右) 替换成 if(typeof jszip und…

高压线束屏蔽效能测试之管中管法、线注入法

一、引言 上期推文介绍了高压线束屏蔽效能测试方法三同轴法,本篇文章将继续介绍高压线束相关测试方法——管中管法和线注入法。 二、管中管法 1、一般要求 管中管法参照IEC62153-4-7标准对高低压连接器进行零部件级屏蔽效能测试。在测试时,通过金属延长管…

3、视图和模板

续上一篇,这一篇 着重于创建公共接口——“视图” 第三部分——3、视图和模板 1、概述2、编写更多视图原理——django依次访问了什么文件 3、写一个真正有用的视图一个快捷函数 render() render——渲染 4、抛出404错误一个快捷函数 get_object_or_404() 5、使用模…

实时数仓和离线数仓的区别是什么,企业该如何选择合适的数仓架构?

目录 一、离线数仓 1. 离线数仓是什么? 2. 离线数仓的特点 3. 离线数仓的适用场景 二、实时数仓 1. 实时数仓是什么? 2. 实时数仓的特点 3. 实时数仓的适用场景 三、由数仓需求变化带来的数据仓库架构的演变 1. 传统数仓架构 2. 离线大数据架构 3. Lambd…

tensorflow之欠拟合与过拟合,正则化缓解

过拟合泛化性弱 欠拟合解决方法: 增加输入特征项 增加网络参数 减少正则化参数 过拟合的解决方法: 数据清洗 增大训练集 采用正则化 增大正则化参数 正则化缓解过拟合 正则化在损失函数中引入模型复杂度指标,利用给w增加权重,…

点线面推进未来智造

如今,宁波拥有门类齐全的制造业体系,形成了以石油化工、汽车及零部件、电工电器、纺织服装等为支柱的产业集群。 宁波工业的发展并非一蹴而就,蓝卓总经理谭彰详细解读了宁波制造业的发展历程与当下目标,从工业小市到工业大市、工业…

基于Matlab和Python泰勒图的绘制

一、泰勒图介绍 泰勒图:泰勒图1常用于评价模型的精度,常用的精度指标有相关系数,标准差以及均方根误差(RMSE)。一般而言,泰勒图中的散点代表模型,辐射线代表相关系数,横纵轴代表标准差,而虚线代表均方根误差。泰勒图一改以往用散点图这种只能呈现两个指标来表示模型精度…

Python数据结构的库之Fuk使用详解

概要 fuk 是一个用于处理 Python 数据结构的库,全称为 "Fast and Uncomplicated Kit"。它提供了一系列高效、简洁的数据结构实现,以及对 Python 内置数据结构的扩展。通过使用 fuk,开发者可以更加方便地处理列表、集合、字典等数据类型,提高代码的执行效率和可读…

vite+vue3拍照上传到nodejs服务器

一:效果展示: 拍照效果 二:Nodejs后端接口代码: 三:前端完整代码:

Vue基础--v-model/v-for/事件属性/侦听器

目录 一 v-model表单元素 1.1 v-model绑定文本域的value 1.1.1 lazy属性:光标离开再发请求 1.1.2 number属性:如果能转成number就会转成numer类型 1.1.3 trim属性:去文本域输入的前后空格 1.2v-model绑定单选checkbox 1.3代码展示 二 …

esp8266+micropython+irsend红外发射调试记录

在网上搜索esp8266micropython的红外发射库,没找到,发现 接收库是有的,可以参考:基于MicroPython的ESP8266连接外设IO(二)_micropython 红外接收-CSDN博客 可惜没有发射,很不方便。 这里都有介…

PHP财务记账管理系统小程序源码

理财小能手必备!揭秘财务记账管理系统的魔力✨ 🌟 引入篇:告别糊涂账,拥抱财务自由 你是否曾为月底的账单头疼不已?是否觉得自己的钱总是莫名其妙地消失?别担心,财务记账管理系统来拯救你的钱…